Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One of the largest lakes in the world

09.09.2008
The geologists are digging in the bed on the western bank of what was once a 700-800 kilometre-long lake along the 62nd parallel in Russia. Large lakes, dammed up by a huge ice sheet one or more times during the last Ice Age, used to dominate this enormous plain.

We are just beyond the ice margin from the maximum of the last Ice Age, where it has been mapped 100 kilometres north of the town of Kotlas in north-western Russia.

Here, at Tolokonka, in a four kilometre-long cutting beside the River Dvina, an international team of scientists is busy studying the past changes in climate.

International cooperation

“Lakes have probably been situated here in two periods during the last Ice Age. We’ve found river delta deposits which suggest that the oldest lake formed some 65 000 years ago,” Eiliv Larsen, a geologist at the Geological Survey of Norway (NGU), tells me.

He is in charge of fieldwork being done in Russia as part of the SciencePub project during the International Polar Year. Along with colleagues from NGU, the University Centre in Svalbard (UNIS) and Hertzen University in St. Petersburg, he is continually finding new pieces to fit into the last Ice Age jig-saw puzzle.

Right on the margin

The enormous lake stretched from Kotlas in the west to the village of UstNem in the east, just a few tens of kilometres from the Ural Mountains. Last year, the scientists found remnants of a lake near UstNem. Now, the same lake has been found 700-800 kilometres further west, in the long cutting at Tolokonka. The mighty River Dvina, meandering north-westwards through the flat landscape to Archangel, dominates this region today.

“We’re trying to find out just what these lakes have looked like. Where did the sediments come from and how did the lakes influence the environment and the climate in the region? Even though we’re just beyond the ice margin, we’re finding traces of the snout of a glacier that calved into the lake from the north. This probably took place around 20 000 years ago and this was the youngest lake in the region,” says Eiliv Larsen.

The future climate

The scientists also tell me that it is very interesting to find out what took place when the ice finally melted, the dams burst and the enormous volumes of dammed up fresh water poured into the Arctic Ocean. This must have had consequences for the climate system and the oceanic circulation, for example.

“We ourselves are urged on by curiosity. When we started working in these parts of Russia 12 or 13 years ago, very little research had been done on the Ice Age. The results of our work now form part of the framework which climate researchers are using to calculate the future climate,” says Eiliv Larsen.

He generally uses a keyhole as a metaphor. “From a distance, you see hardly anything of the inside of the room, but the closer you manage to put your eye to the keyhole, the more of the room becomes apparent. It’s the same with the research here in north-western Russia, we’re uncovering more and more of the Ice Age history and hence the past climate changes,” he says.

Eiliv Larsen | alfa
Further information:
http://www.ngu.no

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>