Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale assessment of the Arctic Ocean: significant increase in freshwater content since 1990s

25.03.2011
The freshwater content of the upper Arctic Ocean has increased by about 20 percent since the 1990s. This corresponds to a rise of approx. 8,400 cubic kilometres and has the same magnitude as the volume of freshwater annually exported on average from this marine region in liquid or frozen form.

This result is published by researchers of the Alfred Wegener Institute in the journal Deep-Sea Research. The freshwater content in the layer of the Arctic Ocean near the surface controls whether heat from the ocean is emitted into the atmosphere or to ice. In addition, it has an impact on global ocean circulation.

Around ten percent of the global mainland runoff flows into the Arctic via the enormous Siberian and North American rivers in addition to relatively low-salt water from the Pacific. This freshwater lies as a light layer on top of the deeper salty and warm ocean layers and thus extensively cuts off heat flow to the ice and atmosphere. Changes in this layer are therefore major control parameters for the sensitive heat balance of the Arctic. We can expect that the additional amount of freshwater in the near-surface layer of the Arctic Ocean will flow out into the North Atlantic in the coming years. The amount of freshwater flowing out of the Arctic influences the formation of deep water in the Greenland Sea and Labrador Sea and thus has impacts on global ocean circulation.

Dr. Benjamin Rabe from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association and his colleagues have evaluated a total of over 5,000 measured salt concentration profiles. To measure the depth distribution of the salt concentration, researchers used sensors from ships or mounted sensors on large ice floes so the data were recorded during the ice drift through the Arctic Ocean. Furthermore, measured values from submarines were inputted in the analyses. Major portions of the data stem from expeditions during International Polar Year 2007/2008. “The well coordinated research programmes in the Arctic have substantially improved the database in these difficult to access areas,” reports Rabe, who will again sail to the central Arctic on the research vessel Polarstern in the coming summer. The dense network of observations in recent years made it possible for the first time to come up with a comparative assessment of the freshwater content in the Arctic Ocean.

Rabe and his colleagues have published the increase in the freshwater content between the periods 1992 to 1999 and 2006 to 2008 in the journal Deep-Sea Research. “The considerable changes in the upper water layers primarily comprise a decline in salt concentration,” says Rabe. Another, though minor, effect is that the low-salt layers are thicker than before. The freshwater content of the Arctic Ocean may rise due to increased sea ice or glacier melt, precipitation or river inputs. Less export of freshwater from the Arctic – in the form of sea ice or in liquid form – also results in a rise in the freshwater content. The authors of the study point to altered export of freshwater and altered inputs from near-coastal areas in Siberia to the central Arctic Ocean as the most probable reasons.

Dr. Michael Karcher from the Alfred Wegener Institute, co-author of the study, simulated the observed processes using the NAOSIM coupled ocean/sea ice model. The model experiments make it possible to study longer periods, i.e. to map times for which no measurement data are available. The model also supplies important insights into the causes of the rising and falling freshwater content and points out the great significance of the local wind field. Measurements and the model additionally show that the changes in the Arctic freshwater content encompass far larger areas than assumed to date.

The title of the original publication by Benjamin Rabe, Michael Karcher, Ursula Schauer, John M. Toole, Richard A. Krishfield, Sergey Pisarev, Frank Kauker, Rüdiger Gerdes and Takashi Kikuchi is: “An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period“ and appeared in the journal Deep-Sea Research I 58 (2011) 173-185; doi:10.1016/j.dsr.2010.12.002 (http://dx.doi.org/10.1016/j.dsr.2010.12.002).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>