Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale assessment of the Arctic Ocean: significant increase in freshwater content since 1990s

25.03.2011
The freshwater content of the upper Arctic Ocean has increased by about 20 percent since the 1990s. This corresponds to a rise of approx. 8,400 cubic kilometres and has the same magnitude as the volume of freshwater annually exported on average from this marine region in liquid or frozen form.

This result is published by researchers of the Alfred Wegener Institute in the journal Deep-Sea Research. The freshwater content in the layer of the Arctic Ocean near the surface controls whether heat from the ocean is emitted into the atmosphere or to ice. In addition, it has an impact on global ocean circulation.

Around ten percent of the global mainland runoff flows into the Arctic via the enormous Siberian and North American rivers in addition to relatively low-salt water from the Pacific. This freshwater lies as a light layer on top of the deeper salty and warm ocean layers and thus extensively cuts off heat flow to the ice and atmosphere. Changes in this layer are therefore major control parameters for the sensitive heat balance of the Arctic. We can expect that the additional amount of freshwater in the near-surface layer of the Arctic Ocean will flow out into the North Atlantic in the coming years. The amount of freshwater flowing out of the Arctic influences the formation of deep water in the Greenland Sea and Labrador Sea and thus has impacts on global ocean circulation.

Dr. Benjamin Rabe from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association and his colleagues have evaluated a total of over 5,000 measured salt concentration profiles. To measure the depth distribution of the salt concentration, researchers used sensors from ships or mounted sensors on large ice floes so the data were recorded during the ice drift through the Arctic Ocean. Furthermore, measured values from submarines were inputted in the analyses. Major portions of the data stem from expeditions during International Polar Year 2007/2008. “The well coordinated research programmes in the Arctic have substantially improved the database in these difficult to access areas,” reports Rabe, who will again sail to the central Arctic on the research vessel Polarstern in the coming summer. The dense network of observations in recent years made it possible for the first time to come up with a comparative assessment of the freshwater content in the Arctic Ocean.

Rabe and his colleagues have published the increase in the freshwater content between the periods 1992 to 1999 and 2006 to 2008 in the journal Deep-Sea Research. “The considerable changes in the upper water layers primarily comprise a decline in salt concentration,” says Rabe. Another, though minor, effect is that the low-salt layers are thicker than before. The freshwater content of the Arctic Ocean may rise due to increased sea ice or glacier melt, precipitation or river inputs. Less export of freshwater from the Arctic – in the form of sea ice or in liquid form – also results in a rise in the freshwater content. The authors of the study point to altered export of freshwater and altered inputs from near-coastal areas in Siberia to the central Arctic Ocean as the most probable reasons.

Dr. Michael Karcher from the Alfred Wegener Institute, co-author of the study, simulated the observed processes using the NAOSIM coupled ocean/sea ice model. The model experiments make it possible to study longer periods, i.e. to map times for which no measurement data are available. The model also supplies important insights into the causes of the rising and falling freshwater content and points out the great significance of the local wind field. Measurements and the model additionally show that the changes in the Arctic freshwater content encompass far larger areas than assumed to date.

The title of the original publication by Benjamin Rabe, Michael Karcher, Ursula Schauer, John M. Toole, Richard A. Krishfield, Sergey Pisarev, Frank Kauker, Rüdiger Gerdes and Takashi Kikuchi is: “An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period“ and appeared in the journal Deep-Sea Research I 58 (2011) 173-185; doi:10.1016/j.dsr.2010.12.002 (http://dx.doi.org/10.1016/j.dsr.2010.12.002).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>