Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large CO2 release speeds up ice age melting

27.08.2010
Radiocarbon dating is used to determine the age of everything from ancient artifacts to prehistoric corals on the ocean bottom.

But in a recent study appearing in the Aug. 26 edition of the journal, Nature, a Lawrence Livermore scientist and his colleagues used the method to trace the pathway of carbon dioxide released from the deep ocean to the atmosphere at the end of the last ice age.

The team noticed that a rapid increase in atmospheric CO2 concentrations coincided with a reduced amount of carbon-14 relative to carbon-12 (the two isotopes of carbon that are used for carbon dating and are referred to as radiocarbon) in the atmosphere.

“This suggests that there was a release of very ‘old’ or low 14/12CO2 from the deep ocean to the atmosphere during the end of the last ice age,” said Tom Guilderson, an author on the paper and a scientist at LLNL’s Center for Accelerator Mass Spectrometry.

The study suggests that CO2 release may speed up the melting following an ice age.

Radiocarbon in the atmosphere is regulated largely by ocean circulation, which controls the sequestration of CO2 in the deep sea through atmosphere-ocean carbon exchange. During the last ice age ( approximately 110,000 to 10,000 years ago), lower atmospheric CO2 levels were accompanied by increased atmospheric radiocarbon concentrations that have been credited to greater storage of CO2 in a poorly ventilated abyssal ocean.

“The ocean circulation was significantly different than it is today and carbon was being stored in the deep ocean in a manner that we don’t completely understand,” Guilderson said.

Using two sediment cores from the sub-Antarctic and subtropic South Pacific near New Zealand, the team dated the cores to be between 13,000 and 19,000 years old. Guilderson was able to use the carbon-14 in the cores as a tracer to determine not only when the large CO2 release occurred but the ocean pathway by which it escaped.

“In this case, the absence of a signal is telling us something important,” Guilderson said. “Deeper waters substantially depleted in carbon-14 were drawn to the upper layers and this is the main source of the CO2 during deglaciation.

Data suggests that the upwelling of this water occurred in the Southern Ocean, near Antarctica. In our cores off New Zealand, which lie in the path of waters which ‘turn over’ in the Southern Ocean, we don’t find anomalously low carbon-14/12 ratios.

This implies that either water which upwelled in the Southern Ocean, after 16,500 years ago, had a vigorous exchange with the atmosphere, allowing its 14C-clock to be reset, or the circulation was significantly different than what the current paradigm is. If the paradigm is wrong, then during the glacial and deglaciation, the North Pacific is much more important than we give it credit for,” Guilderson said.

The large CO2 release sped up the melting, he said.

As for CO2 emissions contributing to recent global warming, Guilderson said the CO2 release from the last ice age is not relevant.

“We can radiocarbon date the CO2 in the atmosphere now and what we’ve found is that the isotopic signature indicates that it is really due to the use of fossil fuels,” he said.

The average lifetime of CO2 in the atmosphere is on the order of 70-100 years.

Other collaborators include the University of California, Davis, the Institute of Marine and Coastal Sciences at Rutgers University, Institute of Marine Sciences at the University of California, Santa Cruz, Institu de Ciència i Tecnologia Ambientals of Spain, University of Auckland, and the Woods Hole Oceanographic Institution. Cruise participants also included individuals from Oregon State University, Texas A&M University, and international collaborators from the New Zealand Institute for Water and Air, and the Australian CSIRO.

The research was funded by the National Science Foundation.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>