Large CO2 release speeds up ice age melting

But in a recent study appearing in the Aug. 26 edition of the journal, Nature, a Lawrence Livermore scientist and his colleagues used the method to trace the pathway of carbon dioxide released from the deep ocean to the atmosphere at the end of the last ice age.

The team noticed that a rapid increase in atmospheric CO2 concentrations coincided with a reduced amount of carbon-14 relative to carbon-12 (the two isotopes of carbon that are used for carbon dating and are referred to as radiocarbon) in the atmosphere.

“This suggests that there was a release of very ‘old’ or low 14/12CO2 from the deep ocean to the atmosphere during the end of the last ice age,” said Tom Guilderson, an author on the paper and a scientist at LLNL’s Center for Accelerator Mass Spectrometry.

The study suggests that CO2 release may speed up the melting following an ice age.

Radiocarbon in the atmosphere is regulated largely by ocean circulation, which controls the sequestration of CO2 in the deep sea through atmosphere-ocean carbon exchange. During the last ice age ( approximately 110,000 to 10,000 years ago), lower atmospheric CO2 levels were accompanied by increased atmospheric radiocarbon concentrations that have been credited to greater storage of CO2 in a poorly ventilated abyssal ocean.

“The ocean circulation was significantly different than it is today and carbon was being stored in the deep ocean in a manner that we don’t completely understand,” Guilderson said.

Using two sediment cores from the sub-Antarctic and subtropic South Pacific near New Zealand, the team dated the cores to be between 13,000 and 19,000 years old. Guilderson was able to use the carbon-14 in the cores as a tracer to determine not only when the large CO2 release occurred but the ocean pathway by which it escaped.

“In this case, the absence of a signal is telling us something important,” Guilderson said. “Deeper waters substantially depleted in carbon-14 were drawn to the upper layers and this is the main source of the CO2 during deglaciation.

Data suggests that the upwelling of this water occurred in the Southern Ocean, near Antarctica. In our cores off New Zealand, which lie in the path of waters which ‘turn over’ in the Southern Ocean, we don’t find anomalously low carbon-14/12 ratios.

This implies that either water which upwelled in the Southern Ocean, after 16,500 years ago, had a vigorous exchange with the atmosphere, allowing its 14C-clock to be reset, or the circulation was significantly different than what the current paradigm is. If the paradigm is wrong, then during the glacial and deglaciation, the North Pacific is much more important than we give it credit for,” Guilderson said.

The large CO2 release sped up the melting, he said.

As for CO2 emissions contributing to recent global warming, Guilderson said the CO2 release from the last ice age is not relevant.

“We can radiocarbon date the CO2 in the atmosphere now and what we’ve found is that the isotopic signature indicates that it is really due to the use of fossil fuels,” he said.

The average lifetime of CO2 in the atmosphere is on the order of 70-100 years.

Other collaborators include the University of California, Davis, the Institute of Marine and Coastal Sciences at Rutgers University, Institute of Marine Sciences at the University of California, Santa Cruz, Institu de Ciència i Tecnologia Ambientals of Spain, University of Auckland, and the Woods Hole Oceanographic Institution. Cruise participants also included individuals from Oregon State University, Texas A&M University, and international collaborators from the New Zealand Institute for Water and Air, and the Australian CSIRO.

The research was funded by the National Science Foundation.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Media Contact

Anne Stark EurekAlert!

More Information:

http://www.llnl.gov

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors