Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land-facing, southwest Greenland Ice Sheet movement decreasing

29.10.2015

In the face of decades of increasing temperatures and surface melting, the movement of the southwest portion of the Greenland Ice Sheet that terminates on land has been slowing down, according to a new study being published by the journal Nature on Oct. 29.

Researchers derived their results by tracking ice sheet movement through Landsat satellite images taken from 1985 to 2014 across a roughly 3,088-square-mile (8000-square-kilometer) region in southwest Greenland. They found that, between 2007 and 2014, ice movement slowed in 84 percent of the study area, during a period of high surface melt, compared to the years between 1985 and 1994. The average slowdown was 12 percent, or 32.8 feet (10 meters) per year.


A river flows in the western region of the Greenland Ice Sheet.

Credits: Andrew Sole, University of Sheffield

The finding is contrary to the widely held view that a greater amount of surface melting will result in faster-moving ice sheets, as the movement of both ocean- and land-terminating ice sheets is caused in part by surface meltwater, which makes its way to the bedrock through openings in the ice and acts as a lubricant. The amount of meltwater draining from the ice sheet in four out of the five years between 2007 and 2012 has been the most substantial of the last 50 years.

Researchers found that while the larger summertime meltwater volume of recent years has led to greater lubrication of the ice sheet base, speeding up its flow as expected, by the end of summer the meltwater has also established channels at the base that act as efficient drainage systems to lessen the water under the ice sheet, slowing it down by winter.

"This suggests that further increases in melting will not cause these land-terminating margins of the ice sheet to speed up," said lead author Andrew Tedstone, a glaciologist at the University of Edinburgh, Scotland.

"Nevertheless, it is unclear how much more slowdown we will see under the current and future melting conditions," said co-author Noel Gourmelen, University of Edinburgh. "More research and observation are needed to determine this."

While these results may be viewed as good news for the Greenland ice sheet, they are offset by the fact that it is not the change in movement of the land- but rather the ocean-terminating portion of the ice sheet that is contributing to sea level rise.

"The ongoing acceleration of both glacier surface melt volumes and the ice motion of ocean-terminating glaciers ensures that Greenland's contribution to sea level rise will likely increase in our warming world," said co-author Peter Nienow, University of Edinburgh.

The Greenland Ice Sheet is the second largest mass of ice on Earth, containing enough water that if it all melted, ocean levels would rise by about 20 feet. Greenland has shed on average 303 gigatons of ice per year since 2004, and with every successive year the loss has increased by 31 gigatons. (Each gigaton equals one billion metric tons.) Recent estimates suggest that surface melting is responsible for 60 percent of Greenland's ice sheet losses, while the remainder is caused by ice sheet discharge into the ocean.

Thomas Neumann, a cryospheric scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland who was not involved in the study, said the finding highlights the importance of having access to a long time series of remote sensing data, such as the Landsat record. "By analyzing velocity estimates extracted from 30 years of Landsat data, this study highlights the complex, and sometimes counterintuitive, interplay between surface meltwater and ice motion."

NASA and the United States Geological Survey have already begun work on Landsat 9 to help continue this record.

Samson Reiny | EurekAlert!

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>