Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lakes Are Sentinels of Climate Change

16.02.2009
A Miami University ecologist and colleagues say lakes not only offer signals about the impact of climate change on freshwater resources, but hold signs of past climate changes in their sediments. They recommend global lake observatory networks to monitor and integrate the signals, among other actions.

Across the vast landscape of the Earth, where are scientists likely to find the clearest signals of climate change so that they can predict future impact? According to Craig Williamson, Miami University professor of zoology and Ohio Eminent Scholar of Ecosystem Ecology, lakes and reservoirs are an important part of the answer.

Williamson and colleagues Jasmine Saros, University of Maine, Orono, and David Schindler, University of Alberta, Edmonton, provide highlights of recent research on lakes in “Sentinels of Change” a Perspectives article published in the Feb. 13 issue of Science magazine.

“Research on lakes in three different areas has really come together to show how important lakes are, in not only acting as sentinels to provide information on how climate change influences freshwater resources, but also acting as integrators by storing the signals of past climate change in their sediments,” Williamson said.

“In addition, it turns out lakes are real ‘hot spots’ of climate regulation,” Williamson continued. “For example, while lakes make up only about three percent of the surface area of the terrestrial landscape, they bury about four times as much carbon as the world’s oceans.”

Williamson and Saros were the lead organizers of an international American Geophysical Union Chapman Conference at Lake Tahoe in September 2008. Scientists and students from 18 countries examined the role of lakes and reservoirs as sentinels, integrators and regulators of climate change and discussed how to incorporate inland waters into global climate models.

Scientists at the conference noted that past modeling efforts have ignored the role of smaller lakes in global climate models. More than 90 percent of the estimated 304 million lakes worldwide are small (less than 0.01 km2) and shallow. “Including lakes and reservoirs in global climate models may shift estimates for many landscapes to greater sources of carbon dioxide,” Williamson said.

Given that freshwater is one of Earth’s resources most jeopardized by changing climate, being able to detect changes that are detrimental to water quality is critically important, according to the researchers. Sentinels of change include decreases in water levels in many lakes, decreases in the duration of winter ice cover by 12 days in the past 100 years, fish kills and changes in plankton communities.

“The outlook for lakes and reservoirs and the ecosystem services they provide is bleak,” state the researchers. “Yet records from these inland waters may provide the insights necessary to address the dual challenges of climate change and increased human domination and their effects on lakes and the larger landscape.”

Global lake observatory networks that monitor and integrate these signals are needed in combination with experimental studies, in order to decipher all the information contained in the waters and sediments of lakes, suggest the scientists.

The proceedings of the “Sentinels of Change” conference will be published as a special issue of the journal Limnology and Oceanography.

Williamson’s research on lakes includes work on alpine and subalpine lakes in the Beartooth Mountains of Montana and Wyoming, the Canadian Rocky Mountains and Lake Tahoe in California, as well as lower elevation lakes in Pennsylvania and reservoirs in Ohio.

“One of the more notable studies that we have just begun is of some of the high lakes in the Andes on the border of Chile and Bolivia. We are working with NASA scientists in an attempt to understand life in extreme environments with some of the highest levels of UV radiation that have been observed on Earth, and in a region where climate change is proceeding at a rate that threatens lakes with drying up,” Williamson explains. “Another particularly interesting study is examining the role of changes in the UV transparency of the waters of Lake Tahoe and how this is allowing warmwater fish species to invade and spread in the lake.”

Craig Williamson may be contacted at 513-529-3180; Skype: craig.e.williamson in Oxford, United States; craig.williamson@muohio.edu; http://www.users.muohio.edu/willia85/.

Susan Meikle | Newswise Science News
Further information:
http://www.users.muohio.edu/willia85/
http://www.muohio.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>