Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New knowledge about permafrost improving climate models


New research findings from the Centre for Permafrost (CENPERM) at the Department of Geosciences and Natural Resource Management, University of Copenhagen, document that permafrost during thawing may result in a substantial release of carbon dioxide into the atmosphere and that the future water content in the soil is crucial to predict the effect of permafrost thawing. The findings may lead to more accurate climate models in the future.

The permafrost is thawing and thus contributes to the release of carbon dioxide and other greenhouse gases into the atmosphere. But the rate at which carbon dioxide is released from permafrost is poorly documented and is one of the most important uncertainties of the current climate models.

The knowledge available so far has primarily been based on measurements of the release of carbon dioxide in short-term studies of up to 3-4 months. The new findings are based on measurements carried out over a 12-year period. Studies with different water content have also been conducted. Professor Bo Elberling, Director of CENPERM (Centre for Permafrost) at the University of Copenhagen, is the person behind the novel research findings which are now being published in the internationally renowned scientific journal Nature Climate Change.

"From a climate change perspective, it makes a huge difference whether it takes 10 or 100 years to release, e.g., half the permafrost carbon pool. We have demonstrated that the supply of oxygen in connection with drainage or drying is essential for a rapid release of carbon dioxide into the atmosphere," says Bo Elberling.

Water content in the soil crucial to predict effect of permafrost thawing

The new findings also show that the future water content in the soil is a decisive factor for being able to correctly predict the effect of permafrost thawing. If the permafrost remains water-saturated after thawing, the carbon decomposition rate will be very low, and the release of carbon dioxide will take place over several hundred years, in addition to methane that is produced in waterlogged conditions. The findings can be used directly to improve existing climate models.

The new studies are mainly conducted at the Zackenberg research station in North-East Greenland, but permafrost samples from four other locations in Svalbard and in Canada have also been included and they show a surprising similarity in the loss of carbon over time.

"It is thought-provoking that microorganisms are behind the entire problem – microorganisms which break down the carbon pool and which are apparently already present in the permafrost. One of the critical decisive factors – the water content – is in the same way linked to the original high content of ice in most permafrost samples. Yes, the temperature is increasing, and the permafrost is thawing, but it is, still, the characteristics of the permafrost which determine the long-term release of carbon dioxide," Bo Elberling concludes.


Professor Bo Elberling, Director of CENPERM, Centre for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K. Mobile: + 45 2363 8453.


The core funding for the Centre for Permafrost for the 2012-2018 period is a Centre of Excellence grant from the Danish National Research Foundation. CENPERM is an interdisciplinary project studying the biological, geographical and physical effects of permafrost thawing in Greenland.

The studies combine field studies in Greenland under extreme conditions with laboratory experiments under controlled conditions. The studies are intended to decode the complex interaction between microorganisms, plants and soil during permafrost thawing.

Permafrost and carbon

Permafrost is layers of soil and sediments which remain frozen for more than two consecutive years, while the active layer is the top layer of soil which thaws during the summer.

In Arctic areas with so-called continuous permafrost, the permafrost may be several hundred metres deep. The permafrost contains large amounts of organic matter, because the pool is built up over several thousand years. The pool can be extremely large and includes old top layers containing organic material which have been buried by wind or water-deposited sediments.

This means that near-surface layers, over time, will become a part of the permafrost. In addition, the decomposition rate of the pool of organic matter is slow during the generally cold conditions in the Arctic. It is well-documented that carbon in organic matter can be decomposed when permafrost layers thaw, and that these decomposition processes can contribute to a significant release of both carbon dioxide and methane – two well-known and problematic greenhouse gases.

How rapidly thaws the permafrost

Observations from Greenland may provide the answer to the question of how rapidly the permafrost thaws. The depth of the active layer in Zackenberg in North-East Greenland has been measured at the end of the growth season since 1996.

The measurements show that the depth of the active layer increases by more than 1 cm per year, which means that, as a minimum, more than 1 cm of permafrost thaws every year. This is the minimum figure, because permafrost, due to its content of ice, will typically decrease in size after thawing and becoming a part of the active layer.

The Danish Meteorological Institute has climate models for the period up until 2100 that cover all of Greenland. The model results predict a future climate with an annual summer mean temperature that is 2-3 degrees higher than today.

All things being equal, this translates into an increase in permafrost thawing in the order of 10-30 cm over the next 70 years. The reason for not stating a more precise figure is that the increase in thawing depends on soil type, in particular the water content. The maximum thawing depth is expected in the dry soil types.

Bo Elberling | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>