Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge about permafrost improving climate models

29.07.2013
Climate

New research findings from the Centre for Permafrost (CENPERM) at the Department of Geosciences and Natural Resource Management, University of Copenhagen, document that permafrost during thawing may result in a substantial release of carbon dioxide into the atmosphere and that the future water content in the soil is crucial to predict the effect of permafrost thawing. The findings may lead to more accurate climate models in the future.

The permafrost is thawing and thus contributes to the release of carbon dioxide and other greenhouse gases into the atmosphere. But the rate at which carbon dioxide is released from permafrost is poorly documented and is one of the most important uncertainties of the current climate models.

The knowledge available so far has primarily been based on measurements of the release of carbon dioxide in short-term studies of up to 3-4 months. The new findings are based on measurements carried out over a 12-year period. Studies with different water content have also been conducted. Professor Bo Elberling, Director of CENPERM (Centre for Permafrost) at the University of Copenhagen, is the person behind the novel research findings which are now being published in the internationally renowned scientific journal Nature Climate Change.

"From a climate change perspective, it makes a huge difference whether it takes 10 or 100 years to release, e.g., half the permafrost carbon pool. We have demonstrated that the supply of oxygen in connection with drainage or drying is essential for a rapid release of carbon dioxide into the atmosphere," says Bo Elberling.

Water content in the soil crucial to predict effect of permafrost thawing

The new findings also show that the future water content in the soil is a decisive factor for being able to correctly predict the effect of permafrost thawing. If the permafrost remains water-saturated after thawing, the carbon decomposition rate will be very low, and the release of carbon dioxide will take place over several hundred years, in addition to methane that is produced in waterlogged conditions. The findings can be used directly to improve existing climate models.

The new studies are mainly conducted at the Zackenberg research station in North-East Greenland, but permafrost samples from four other locations in Svalbard and in Canada have also been included and they show a surprising similarity in the loss of carbon over time.

"It is thought-provoking that microorganisms are behind the entire problem – microorganisms which break down the carbon pool and which are apparently already present in the permafrost. One of the critical decisive factors – the water content – is in the same way linked to the original high content of ice in most permafrost samples. Yes, the temperature is increasing, and the permafrost is thawing, but it is, still, the characteristics of the permafrost which determine the long-term release of carbon dioxide," Bo Elberling concludes.

Contact

Professor Bo Elberling, Director of CENPERM, Centre for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K. Mobile: + 45 2363 8453.

About CENPERM

The core funding for the Centre for Permafrost for the 2012-2018 period is a Centre of Excellence grant from the Danish National Research Foundation. CENPERM is an interdisciplinary project studying the biological, geographical and physical effects of permafrost thawing in Greenland.

The studies combine field studies in Greenland under extreme conditions with laboratory experiments under controlled conditions. The studies are intended to decode the complex interaction between microorganisms, plants and soil during permafrost thawing.

Permafrost and carbon

Permafrost is layers of soil and sediments which remain frozen for more than two consecutive years, while the active layer is the top layer of soil which thaws during the summer.

In Arctic areas with so-called continuous permafrost, the permafrost may be several hundred metres deep. The permafrost contains large amounts of organic matter, because the pool is built up over several thousand years. The pool can be extremely large and includes old top layers containing organic material which have been buried by wind or water-deposited sediments.

This means that near-surface layers, over time, will become a part of the permafrost. In addition, the decomposition rate of the pool of organic matter is slow during the generally cold conditions in the Arctic. It is well-documented that carbon in organic matter can be decomposed when permafrost layers thaw, and that these decomposition processes can contribute to a significant release of both carbon dioxide and methane – two well-known and problematic greenhouse gases.

How rapidly thaws the permafrost

Observations from Greenland may provide the answer to the question of how rapidly the permafrost thaws. The depth of the active layer in Zackenberg in North-East Greenland has been measured at the end of the growth season since 1996.

The measurements show that the depth of the active layer increases by more than 1 cm per year, which means that, as a minimum, more than 1 cm of permafrost thaws every year. This is the minimum figure, because permafrost, due to its content of ice, will typically decrease in size after thawing and becoming a part of the active layer.

The Danish Meteorological Institute has climate models for the period up until 2100 that cover all of Greenland. The model results predict a future climate with an annual summer mean temperature that is 2-3 degrees higher than today.

All things being equal, this translates into an increase in permafrost thawing in the order of 10-30 cm over the next 70 years. The reason for not stating a more precise figure is that the increase in thawing depends on soil type, in particular the water content. The maximum thawing depth is expected in the dry soil types.

Bo Elberling | EurekAlert!
Further information:
http://www.ku.dk

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>