Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge about permafrost improving climate models

29.07.2013
Climate

New research findings from the Centre for Permafrost (CENPERM) at the Department of Geosciences and Natural Resource Management, University of Copenhagen, document that permafrost during thawing may result in a substantial release of carbon dioxide into the atmosphere and that the future water content in the soil is crucial to predict the effect of permafrost thawing. The findings may lead to more accurate climate models in the future.

The permafrost is thawing and thus contributes to the release of carbon dioxide and other greenhouse gases into the atmosphere. But the rate at which carbon dioxide is released from permafrost is poorly documented and is one of the most important uncertainties of the current climate models.

The knowledge available so far has primarily been based on measurements of the release of carbon dioxide in short-term studies of up to 3-4 months. The new findings are based on measurements carried out over a 12-year period. Studies with different water content have also been conducted. Professor Bo Elberling, Director of CENPERM (Centre for Permafrost) at the University of Copenhagen, is the person behind the novel research findings which are now being published in the internationally renowned scientific journal Nature Climate Change.

"From a climate change perspective, it makes a huge difference whether it takes 10 or 100 years to release, e.g., half the permafrost carbon pool. We have demonstrated that the supply of oxygen in connection with drainage or drying is essential for a rapid release of carbon dioxide into the atmosphere," says Bo Elberling.

Water content in the soil crucial to predict effect of permafrost thawing

The new findings also show that the future water content in the soil is a decisive factor for being able to correctly predict the effect of permafrost thawing. If the permafrost remains water-saturated after thawing, the carbon decomposition rate will be very low, and the release of carbon dioxide will take place over several hundred years, in addition to methane that is produced in waterlogged conditions. The findings can be used directly to improve existing climate models.

The new studies are mainly conducted at the Zackenberg research station in North-East Greenland, but permafrost samples from four other locations in Svalbard and in Canada have also been included and they show a surprising similarity in the loss of carbon over time.

"It is thought-provoking that microorganisms are behind the entire problem – microorganisms which break down the carbon pool and which are apparently already present in the permafrost. One of the critical decisive factors – the water content – is in the same way linked to the original high content of ice in most permafrost samples. Yes, the temperature is increasing, and the permafrost is thawing, but it is, still, the characteristics of the permafrost which determine the long-term release of carbon dioxide," Bo Elberling concludes.

Contact

Professor Bo Elberling, Director of CENPERM, Centre for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K. Mobile: + 45 2363 8453.

About CENPERM

The core funding for the Centre for Permafrost for the 2012-2018 period is a Centre of Excellence grant from the Danish National Research Foundation. CENPERM is an interdisciplinary project studying the biological, geographical and physical effects of permafrost thawing in Greenland.

The studies combine field studies in Greenland under extreme conditions with laboratory experiments under controlled conditions. The studies are intended to decode the complex interaction between microorganisms, plants and soil during permafrost thawing.

Permafrost and carbon

Permafrost is layers of soil and sediments which remain frozen for more than two consecutive years, while the active layer is the top layer of soil which thaws during the summer.

In Arctic areas with so-called continuous permafrost, the permafrost may be several hundred metres deep. The permafrost contains large amounts of organic matter, because the pool is built up over several thousand years. The pool can be extremely large and includes old top layers containing organic material which have been buried by wind or water-deposited sediments.

This means that near-surface layers, over time, will become a part of the permafrost. In addition, the decomposition rate of the pool of organic matter is slow during the generally cold conditions in the Arctic. It is well-documented that carbon in organic matter can be decomposed when permafrost layers thaw, and that these decomposition processes can contribute to a significant release of both carbon dioxide and methane – two well-known and problematic greenhouse gases.

How rapidly thaws the permafrost

Observations from Greenland may provide the answer to the question of how rapidly the permafrost thaws. The depth of the active layer in Zackenberg in North-East Greenland has been measured at the end of the growth season since 1996.

The measurements show that the depth of the active layer increases by more than 1 cm per year, which means that, as a minimum, more than 1 cm of permafrost thaws every year. This is the minimum figure, because permafrost, due to its content of ice, will typically decrease in size after thawing and becoming a part of the active layer.

The Danish Meteorological Institute has climate models for the period up until 2100 that cover all of Greenland. The model results predict a future climate with an annual summer mean temperature that is 2-3 degrees higher than today.

All things being equal, this translates into an increase in permafrost thawing in the order of 10-30 cm over the next 70 years. The reason for not stating a more precise figure is that the increase in thawing depends on soil type, in particular the water content. The maximum thawing depth is expected in the dry soil types.

Bo Elberling | EurekAlert!
Further information:
http://www.ku.dk

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>