Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-Its-Kind Map Details the Height of the Globe’s Forests

21.07.2010
Using satellite data, scientists have produced a first-of-its kind map that details the height of the world’s forests. Although there are other local- and regional-scale forest canopy maps, the new map is the first that spans the entire globe based on one uniform method.
The map, based on data collected by NASA's ICESat, Terra, and Aqua satellites, should help scientists build an inventory of how much carbon the world’s forests store and how fast that carbon cycles through ecosystems and back into the atmosphere.

This new global depiction shows the world’s tallest forests clustered in the Pacific Northwest of North America and portions of Southeast Asia, while shorter forests are found in broad swaths across northern Canada and Eurasia. Temperate conifer forests – which are extremely moist and contain massive trees such as Douglas fir, western hemlock, redwoods, and sequoias – have the tallest canopies, soaring easily above 40 meters (131 feet). In contrast, boreal forests dominated by spruce, fir, pine, and larch had canopies typically less than 20 meters (65 feet). Relatively undisturbed areas in tropical rain forests were about 25 meters (82 feet), roughly the same height as the oak, beeches, and birches of temperate broadleaf forests common in Europe and much of the United States.

“This is a really just a first draft, and it will certainly be refined in the future,” said Michael Lefsky, the remote sensing specialist from Colorado State University who made the map. Lefsky described his results in a scientific report that has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The forest-height map has implications for an ongoing effort to estimate the amount of carbon tied up in Earth’s forests and for explaining what sops up 2 billion tons of “missing” carbon each year. Humans release about 7 billion tons of carbon annually, mostly in the form of carbon dioxide. Of that, 3 billion tons end up in the atmosphere and 2 billion tons in the ocean. It’s unclear where the last two billion tons of carbon go, though scientists suspect forests capture and store much of it as biomass through photosynthesis.

“What we really want is a map of above-ground biomass, and the height map helps get us there,” said Richard Houghton, an expert in terrestrial ecosystem science and the deputy director of the Woods Hole Research Center.

Lefsky used data from a laser technology called LIDAR that’s capable of capturing vertical slices of surface features. It does so by shooting pulses of light at the surface and observing how much longer it takes for light to bounce back from the ground surface than from the top of the canopy. Since LIDAR can penetrate the top layer of forest canopy, it provides a fully-textured snapshot of the vertical structure of a forest—something that no other scientific instrument can offer.

Lefsky based his map on data from more than 250 million laser pulses collected during a seven-year period. Each pulse returns information about just a tiny portion of the Earth’s surface, so the project completed direct LIDAR measurements of only 2.4 percent of the planet’s forested surfaces. To complete the map, Lefsky combined the LIDAR data with information from the Moderate Resolution Imaging Spectroradiometer (MODIS), a satellite instrument aboard both the Terra and Aqua satellites that senses a much broader swath of Earth’s surface, even though it doesn’t provide the vertical profile.

The next generation LIDAR measurements of forests and biomass, which will improve the resolution of the map considerably, could come from NASA's Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) satellite, proposed for the latter part of this decade.
Notes for Journalists
As of the date of this press release, the paper by Lefsky is still “in press” (i.e. not yet published). Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

http://www.agu.org/journals/pip/gl/2010GL043622-pip.pdf

Or, you may order a copy of the paper by emailing your request to Kathleen O’Neil at koneil@agu.org. Please provide your name, the name of your publication, and your phone number. Neither the paper nor this press release are under embargo.

Title: “A global forest canopy height map from MODIS and the Geoscience Laser Altimeter System”

Author: Michael Lefsky, Colorado State University, Fort Collins, Colorado, USA.

Contact information for the author: Michael Lefsky +1(970) 491-0602; lefsky@cnr.colostate.edu

AGU Contact: Kathleen O’Neil +1 (202) 777-7524, koneil@agu.org
NASA Contact: Steven Cole +1 (202) 358-0918, stephen.e.cole@nasa.gov
CSU Contact: Kimberly Sorensen +1 (970) 491-0757 kimberly.sorensen@colostate.edu

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>