Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key New Ingredient in Climate Model Refines Global Predictions

13.10.2009
For the first time, climate scientists from across the country have successfully incorporated the nitrogen cycle into global simulations for climate change, questioning previous assumptions regarding carbon feedback and potentially helping to refine model forecasts about global warming.

The results of the experiment at the Department of Energy’s Oak Ridge National Laboratory and at the National Center for Atmospheric Research are published in the current issue of Biogeosciences. They illustrate the complexity of climate modeling by demonstrating how natural processes still have a strong effect on the carbon cycle and climate simulations.

In this case, scientists found that the rate of climate change over the next century could be higher than previously anticipated when the requirement of plant nutrients are included in the climate model.

ORNL’s Peter Thornton, lead author of the paper, describes the inclusion of these processes as a necessary step to improve the accuracy of climate change assessments.

“We’ve shown that if all of the global modeling groups were to include some kind of nutrient dynamics, the range of model predictions would shrink because of the constraining effects of the carbon nutrient limitations, even though it’s a more complex model.”

To date, climate models ignored the nutrient requirements for new vegetation growth, assuming that all plants on earth had access to as much “plant food” as they needed. But by taking the natural demand for nutrients into account, the authors have shown that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. Since less growth implies less CO2 absorbed by vegetation, the CO2 concentrations in the atmosphere are expected to increase.

However, this reduction in growth is partially offset by another effect on the nitrogen cycle: an increase in the availability of nutrients resulting from an accelerated rate of decomposition – the rotting of dead plants and other organic matter – that occurs with a rise in temperature.

Combining these two effects, the authors discovered that the increased availability of nutrients from more rapid decomposition did not counterbalance the reduced level of plant growth calculated by natural nutrient limitations; therefore less new growth and higher atmospheric CO¬2 concentrations are expected.

The study’s author list, which consists of scientists from eight different institutions around the U.S. including ORNL, the National Center for Atmospheric Research, the National Oceanic and Atmospheric Administration Earth System Research Laboratory, and several research universities, exemplifies the broad expertise required to engage in the multidisciplinary field that is global climate modeling.

“In order to do these experiments in the climate system model, expertise is needed in the nitrogen cycle, but there is also a need for climate modeling expertise, the ocean has to be involved properly, the atmospheric chemistry . . . and then there are a lot of observations that have been used to parameterize the model,” said Thornton, who works in ORNL’s Environmental Sciences Division.

“The biggest challenge has been bridging this multidisciplinary gap and demonstrating to the very broad range of climate scientists who range everywhere from cloud dynamicists to deep ocean circulation specialists that [incorporating the nitrogen cycle] is a worthwhile and useful approach.”

The ability to handle the increase in complexities of these models was facilitated by the capabilities of ORNL’s Leadership Computing Facility, which currently houses the world’s fastest supercomputer for civilian research. Jim Hack, director of the National Center for Computational Sciences, emphasizes that Thornton and his team were not limited by computational resources in the construction of his model. “It’s one of the laboratory competencies, so we want to make sure we enable leadership science,” he said.

This breakthrough is one more step toward a more realistic prediction for the future of the earth’s climate. Nevertheless, potentially significant processes and dynamics are still missing from the simulations. Thornton also stresses the importance of long-term observation so scientists can better understand and model these processes.

A 15-year study of the role nitrogen plays in plant nutrition at Harvard Forest was an important observational source used to test their mathematical representation of the nitrogen cycle--a long experiment by any standards, but still an experiment that, according to Thornton, could improve the accuracy of the simulation if conducted even longer.

Other shortcomings of climate simulations include the disregard of changing vegetation patterns due to human land use and potential shifts in types of vegetation that might occur under a changing climate, although both topics are the focus of ongoing studies.

The research was funded by the DOE Office of Science. Additional resources were contributed by NASA Earth Science Enterprise, Terrestrial Ecology Program; National Center for Atmospheric Research through the NCAR Community Climate System Modeling program and the NCAR Biogeosciences program.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>