Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key New Ingredient in Climate Model Refines Global Predictions

13.10.2009
For the first time, climate scientists from across the country have successfully incorporated the nitrogen cycle into global simulations for climate change, questioning previous assumptions regarding carbon feedback and potentially helping to refine model forecasts about global warming.

The results of the experiment at the Department of Energy’s Oak Ridge National Laboratory and at the National Center for Atmospheric Research are published in the current issue of Biogeosciences. They illustrate the complexity of climate modeling by demonstrating how natural processes still have a strong effect on the carbon cycle and climate simulations.

In this case, scientists found that the rate of climate change over the next century could be higher than previously anticipated when the requirement of plant nutrients are included in the climate model.

ORNL’s Peter Thornton, lead author of the paper, describes the inclusion of these processes as a necessary step to improve the accuracy of climate change assessments.

“We’ve shown that if all of the global modeling groups were to include some kind of nutrient dynamics, the range of model predictions would shrink because of the constraining effects of the carbon nutrient limitations, even though it’s a more complex model.”

To date, climate models ignored the nutrient requirements for new vegetation growth, assuming that all plants on earth had access to as much “plant food” as they needed. But by taking the natural demand for nutrients into account, the authors have shown that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. Since less growth implies less CO2 absorbed by vegetation, the CO2 concentrations in the atmosphere are expected to increase.

However, this reduction in growth is partially offset by another effect on the nitrogen cycle: an increase in the availability of nutrients resulting from an accelerated rate of decomposition – the rotting of dead plants and other organic matter – that occurs with a rise in temperature.

Combining these two effects, the authors discovered that the increased availability of nutrients from more rapid decomposition did not counterbalance the reduced level of plant growth calculated by natural nutrient limitations; therefore less new growth and higher atmospheric CO¬2 concentrations are expected.

The study’s author list, which consists of scientists from eight different institutions around the U.S. including ORNL, the National Center for Atmospheric Research, the National Oceanic and Atmospheric Administration Earth System Research Laboratory, and several research universities, exemplifies the broad expertise required to engage in the multidisciplinary field that is global climate modeling.

“In order to do these experiments in the climate system model, expertise is needed in the nitrogen cycle, but there is also a need for climate modeling expertise, the ocean has to be involved properly, the atmospheric chemistry . . . and then there are a lot of observations that have been used to parameterize the model,” said Thornton, who works in ORNL’s Environmental Sciences Division.

“The biggest challenge has been bridging this multidisciplinary gap and demonstrating to the very broad range of climate scientists who range everywhere from cloud dynamicists to deep ocean circulation specialists that [incorporating the nitrogen cycle] is a worthwhile and useful approach.”

The ability to handle the increase in complexities of these models was facilitated by the capabilities of ORNL’s Leadership Computing Facility, which currently houses the world’s fastest supercomputer for civilian research. Jim Hack, director of the National Center for Computational Sciences, emphasizes that Thornton and his team were not limited by computational resources in the construction of his model. “It’s one of the laboratory competencies, so we want to make sure we enable leadership science,” he said.

This breakthrough is one more step toward a more realistic prediction for the future of the earth’s climate. Nevertheless, potentially significant processes and dynamics are still missing from the simulations. Thornton also stresses the importance of long-term observation so scientists can better understand and model these processes.

A 15-year study of the role nitrogen plays in plant nutrition at Harvard Forest was an important observational source used to test their mathematical representation of the nitrogen cycle--a long experiment by any standards, but still an experiment that, according to Thornton, could improve the accuracy of the simulation if conducted even longer.

Other shortcomings of climate simulations include the disregard of changing vegetation patterns due to human land use and potential shifts in types of vegetation that might occur under a changing climate, although both topics are the focus of ongoing studies.

The research was funded by the DOE Office of Science. Additional resources were contributed by NASA Earth Science Enterprise, Terrestrial Ecology Program; National Center for Atmospheric Research through the NCAR Community Climate System Modeling program and the NCAR Biogeosciences program.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>