Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping our sights on big breakers with radar

17.08.2009
GKSS coastal researchers study waves on the FINO3 research platform
Scientists of the Geesthacht GKSS Research Centre have developed a radar system with which it is possible to study the behaviour of sea waves. This technology will be used immediately on the North Sea on the FINO3 research platform in order to determine the interactions between offshore wind power machines and swells.

Image of the FINO3 platform on the North Sea. (Image: Bastian Barton/ FH Kiel)
The location of the FINO3 research platforms, the "Dan Tysk" sand bank, is located approximately 80 kilometres to the west of Sylt where up to 80 wind power plants will be located in just a few years. FINO3 is used by researchers to estimate the environmental consequences and technical risks of offshore wind energy parks. Changes in the sea swell are also of great interest in addition to the observations of bird migration or the measurement of lightening frequencies on the sea.

To determine how much of an effect large waves and what is known as ‘breakers’ have on wind power plants and to what extent the structures can change the surrounding swell, the coastal researchers of the Geesthacht GKSS Research Centre installed a Doppler radar approximately 50 metres above sea level on the FINO3 lattice mast.

"With our radar, we can even track the individual waves for the first time", writes Dr. Freidwart Ziemer, GKSS Department Manager of Radar Hydrology, the unique part of the project. For several years, Ziemer and his team have studied the swell and the behaviour of large breakers. The information is transmitted by FINO3 to Geesthacht via satellite.

Assessing swells better

The wave radar of the Geesthacht coastal researchers on the FINO3 measurement platform. (Photo: F. Ziemer/GKSS Research Centre Geesthacht)

The frequency of large breakers and the force which creates the steep giant waves are of particular interest not only to researchers but also the designers and operators of offshore wind power plants or oil platforms.

Each individual wind rotor creates turbulent air flows in its "tow" and periodical movements, which can have an effect on other structures. This can result in undesired or even dangerous vibrations. If there is an interaction between the waves and the individual wind power plants, this can result in interferences. This means in a wave field which is harmless without a windmill park, single, very high waves can be created by these interferences which could possibly have a critical effect on these plants.

"I am sure that we will soon be able to better assess the swells and the force of the breakers," says Friedwart Ziemer. This means that the breaker behaviour could be taken into account better in planning and the stability of the systems can be more predictable.

Solid position on the COSYNA North Sea monitoring system
The FINO3 research platform will be an important component in the new COSYNA measurement network initiated by GKSS. A comprehensive monitoring system will be created in the German North Sea area to record, predict and provide scientific analysis of the current state and development of the coastal waters with the major COSYNA project (Coastal Observation System for Northern and Arctic Seas).

FINO3 will provide the Geesthacht coast researchers information on seafaring and the wind. Breaker statistics are also planned. The Doppler radar technology was developed by the GKSS employees in unison with the Technical University of Saint Petersburg. The initial test readings with the new wave radar from the shore have already been carried out successfully.

The project coordinator of FINO3 is the research and development centre of the Kiel University of Applied Sciences (Fachhochschule Kiel GmbH). The project executing organisation is the Federal ministry of the environment, natural protection and reactor safety (BMU).

Dr. Friedwart Ziemer | EurekAlert!
Further information:
http://www.gkss.de

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>