Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Keeping our sights on big breakers with radar

GKSS coastal researchers study waves on the FINO3 research platform
Scientists of the Geesthacht GKSS Research Centre have developed a radar system with which it is possible to study the behaviour of sea waves. This technology will be used immediately on the North Sea on the FINO3 research platform in order to determine the interactions between offshore wind power machines and swells.

Image of the FINO3 platform on the North Sea. (Image: Bastian Barton/ FH Kiel)
The location of the FINO3 research platforms, the "Dan Tysk" sand bank, is located approximately 80 kilometres to the west of Sylt where up to 80 wind power plants will be located in just a few years. FINO3 is used by researchers to estimate the environmental consequences and technical risks of offshore wind energy parks. Changes in the sea swell are also of great interest in addition to the observations of bird migration or the measurement of lightening frequencies on the sea.

To determine how much of an effect large waves and what is known as ‘breakers’ have on wind power plants and to what extent the structures can change the surrounding swell, the coastal researchers of the Geesthacht GKSS Research Centre installed a Doppler radar approximately 50 metres above sea level on the FINO3 lattice mast.

"With our radar, we can even track the individual waves for the first time", writes Dr. Freidwart Ziemer, GKSS Department Manager of Radar Hydrology, the unique part of the project. For several years, Ziemer and his team have studied the swell and the behaviour of large breakers. The information is transmitted by FINO3 to Geesthacht via satellite.

Assessing swells better

The wave radar of the Geesthacht coastal researchers on the FINO3 measurement platform. (Photo: F. Ziemer/GKSS Research Centre Geesthacht)

The frequency of large breakers and the force which creates the steep giant waves are of particular interest not only to researchers but also the designers and operators of offshore wind power plants or oil platforms.

Each individual wind rotor creates turbulent air flows in its "tow" and periodical movements, which can have an effect on other structures. This can result in undesired or even dangerous vibrations. If there is an interaction between the waves and the individual wind power plants, this can result in interferences. This means in a wave field which is harmless without a windmill park, single, very high waves can be created by these interferences which could possibly have a critical effect on these plants.

"I am sure that we will soon be able to better assess the swells and the force of the breakers," says Friedwart Ziemer. This means that the breaker behaviour could be taken into account better in planning and the stability of the systems can be more predictable.

Solid position on the COSYNA North Sea monitoring system
The FINO3 research platform will be an important component in the new COSYNA measurement network initiated by GKSS. A comprehensive monitoring system will be created in the German North Sea area to record, predict and provide scientific analysis of the current state and development of the coastal waters with the major COSYNA project (Coastal Observation System for Northern and Arctic Seas).

FINO3 will provide the Geesthacht coast researchers information on seafaring and the wind. Breaker statistics are also planned. The Doppler radar technology was developed by the GKSS employees in unison with the Technical University of Saint Petersburg. The initial test readings with the new wave radar from the shore have already been carried out successfully.

The project coordinator of FINO3 is the research and development centre of the Kiel University of Applied Sciences (Fachhochschule Kiel GmbH). The project executing organisation is the Federal ministry of the environment, natural protection and reactor safety (BMU).

Dr. Friedwart Ziemer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>