Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Just Right' Plant Growth May Make River Deltas Resilient

26.08.2014

Research by Indiana University geologists suggests that an intermediate amount of vegetation -- not too little and not too much -- is most effective at stabilizing freshwater river deltas.

The study, "Optimum vegetation height and density for inorganic sedimentation in deltaic marshes," was published online Aug. 24 by Nature Geoscience. The findings may help guide restoration of river deltas, such as those near the mouth of the Mississippi River, which are under threat as sea levels rise.


Elizabeth Olliver, Indiana University

This image shows freshwater marsh vegetation in Wax Lake Delta, La. Aquatic vegetation on low-elevation marshes is pictured in the foreground, while woody vegetation occupies a levee on the left. The open water in the distance is a deltaic distributary channel.

Authors are William Nardin, a postdoctoral fellow in the Department of Geological Sciences in the IU Bloomington College of Arts and Sciences; and Douglas A. Edmonds, who holds the Robert R. Shrock Professorship in Sedimentary Geology and is an assistant professor of geological sciences.

Vegetation on marsh surfaces in river deltas can slow the flow of water and cause more sediment to be deposited, helping prevent sea-level rise from drowning sensitive marshlands. But the study finds that, if the vegetation is too tall or dense, it diverts water into the river channel, resulting in less sediment being deposited on the marsh.

“In river deltas the effect of vegetation on sedimentation seems to follow the Goldilocks principle,” Edmonds said. “You want the amount of vegetation that is just right -- not too much, but also not too little.”

The world’s river deltas are rich and productive and are home to about 10 percent of the world’s population. But they are threatened by an array of forces, including population growth, pollution, development and erosion, as well as sea-level rise associated with climate change.

Edmonds wrote in a 2012 Nature Geoscience article that river deltas can be restored, but it will take a better understanding of the processes involved in their formation and destruction. The current study suggests vegetation could play a role in designing effective river delta restoration.

In tidal saltwater marshes, research has shown that vegetation enhances sedimentation. But scientists know less about how vegetation affects sedimentation in freshwater marshes that are common in river deltas. Nardin and Edmonds used sophisticated computer modeling to study how marsh vegetation influences the transport and deposition of sediment in river deltas. They conducted 75 simulations involving varying scenarios of vegetation height and density and rates of water flow.

They found that vegetation of intermediate height and density results in the greatest deposition of sand and mud. However, if the plants are too tall or densely packed, sediment tends to remain in the river channel, bypassing marshes and being carried directly to the sea.

The researchers also analyzed remote-sensing data collected from Wax Lake Delta in Louisiana. The analysis showed the delta exhibits a hydrodynamic response to the presence of vegetation that corresponds with what the researchers found with their model.

The rate at which sediment is delivered to marshes in river deltas is strongly influenced by storms and flooding, as well as the construction of engineered diversions. The research suggests the resilience of river deltas will depend on the timing of floods and storms relative to the seasonal growth of vegetation. And of course, scientists can’t control or even predict when floods will occur.

“That unpredictability adds an interesting twist to the problem,” Edmonds said. “The time that the flood wave arrives does not always coincide with the timing of vegetation growth and decay. Those two have to line up just right for vegetation to really enhance deposition of sand and mud.”

Funding for the research came from a National Science Foundation Frontiers in Earth Systems Dynamics grant and from the Alfred P. Sloan Foundation. To speak with Edmonds or Nardin, contact Steve Hinnefeld with IU Communications, 812-856-3488 or slhinnef@iu.edu.

Steve Hinnefeld | newswise
Further information:
http://www.iu.edu

Further reports about: Geoscience Nature River construction floods marshes marshlands sedimentation storms

More articles from Earth Sciences:

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

nachricht Groundwater discharge to upper Colorado River Basin varies in response to drought
21.07.2016 | US Geological Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>