Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Just Right' Plant Growth May Make River Deltas Resilient

26.08.2014

Research by Indiana University geologists suggests that an intermediate amount of vegetation -- not too little and not too much -- is most effective at stabilizing freshwater river deltas.

The study, "Optimum vegetation height and density for inorganic sedimentation in deltaic marshes," was published online Aug. 24 by Nature Geoscience. The findings may help guide restoration of river deltas, such as those near the mouth of the Mississippi River, which are under threat as sea levels rise.


Elizabeth Olliver, Indiana University

This image shows freshwater marsh vegetation in Wax Lake Delta, La. Aquatic vegetation on low-elevation marshes is pictured in the foreground, while woody vegetation occupies a levee on the left. The open water in the distance is a deltaic distributary channel.

Authors are William Nardin, a postdoctoral fellow in the Department of Geological Sciences in the IU Bloomington College of Arts and Sciences; and Douglas A. Edmonds, who holds the Robert R. Shrock Professorship in Sedimentary Geology and is an assistant professor of geological sciences.

Vegetation on marsh surfaces in river deltas can slow the flow of water and cause more sediment to be deposited, helping prevent sea-level rise from drowning sensitive marshlands. But the study finds that, if the vegetation is too tall or dense, it diverts water into the river channel, resulting in less sediment being deposited on the marsh.

“In river deltas the effect of vegetation on sedimentation seems to follow the Goldilocks principle,” Edmonds said. “You want the amount of vegetation that is just right -- not too much, but also not too little.”

The world’s river deltas are rich and productive and are home to about 10 percent of the world’s population. But they are threatened by an array of forces, including population growth, pollution, development and erosion, as well as sea-level rise associated with climate change.

Edmonds wrote in a 2012 Nature Geoscience article that river deltas can be restored, but it will take a better understanding of the processes involved in their formation and destruction. The current study suggests vegetation could play a role in designing effective river delta restoration.

In tidal saltwater marshes, research has shown that vegetation enhances sedimentation. But scientists know less about how vegetation affects sedimentation in freshwater marshes that are common in river deltas. Nardin and Edmonds used sophisticated computer modeling to study how marsh vegetation influences the transport and deposition of sediment in river deltas. They conducted 75 simulations involving varying scenarios of vegetation height and density and rates of water flow.

They found that vegetation of intermediate height and density results in the greatest deposition of sand and mud. However, if the plants are too tall or densely packed, sediment tends to remain in the river channel, bypassing marshes and being carried directly to the sea.

The researchers also analyzed remote-sensing data collected from Wax Lake Delta in Louisiana. The analysis showed the delta exhibits a hydrodynamic response to the presence of vegetation that corresponds with what the researchers found with their model.

The rate at which sediment is delivered to marshes in river deltas is strongly influenced by storms and flooding, as well as the construction of engineered diversions. The research suggests the resilience of river deltas will depend on the timing of floods and storms relative to the seasonal growth of vegetation. And of course, scientists can’t control or even predict when floods will occur.

“That unpredictability adds an interesting twist to the problem,” Edmonds said. “The time that the flood wave arrives does not always coincide with the timing of vegetation growth and decay. Those two have to line up just right for vegetation to really enhance deposition of sand and mud.”

Funding for the research came from a National Science Foundation Frontiers in Earth Systems Dynamics grant and from the Alfred P. Sloan Foundation. To speak with Edmonds or Nardin, contact Steve Hinnefeld with IU Communications, 812-856-3488 or slhinnef@iu.edu.

Steve Hinnefeld | newswise
Further information:
http://www.iu.edu

Further reports about: Geoscience Nature River construction floods marshes marshlands sedimentation storms

More articles from Earth Sciences:

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

nachricht Diversity of habitats at natural oil seeps
22.08.2016 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>