Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Journey to the Center of the Earth

17.10.2014

A UCSB geochemist uses helium and lead isotopes to gain insight into the makeup of the planet’s deep interior

A UC Santa Barbara geochemist studying Samoan volcanoes has found evidence of the planet’s early formation still trapped inside the Earth. Known as hotspots, volcanic island chains such as Samoa can ancient primordial signatures from the early solar system that have somehow survived billions of years.

Matthew Jackson, an associate professor in UCSB’s Department of Earth Science, and colleagues utilized high-precision lead and helium isotope measurements to unravel the chemical composition and geometry of the deep mantle plume feeding Samoa’s volcanoes. Their findings appear today in the journal Nature.

In most cases, volcanoes are located at the point where two tectonic plates meet, and are created when those plates collide or diverge. Hotspot volcanoes, however, are not located at plate boundaries but rather represent the anomalous melting in the interior of the plates.

Such intraplate volcanoes form above a plume-fed hotspot where the Earth’s mantle is melting. The plate moves over time — at approximately the rate human fingernails grow (3 inches a year) — and eventually the volcano moves off the hotspot and becomes extinct. Another volcano forms in its place over the hotspot and the process repeats itself until a string of volcanoes evolves.

“So you end up with this linear trend of age-progressive volcanoes,” Jackson said. “On the Pacific plate, the youngest is in the east and as you go to the west, the volcanoes are older and more deeply eroded. Hawaii has two linear trends of volcanoes — most underwater — which are parallel to each other. There’s a southern trend and a northern trend.”

Because the volcanic composition of parallel Hawaiian trends is fundamentally different, Jackson and his team decided to look for evidence of this in other hotspots. In Samoa, they found three volcanic trends exhibiting three different chemical configurations as well as a fourth group of a late-stage eruption on top of the third trend of volcanoes. These different groups exhibit distinct compositions.

“Our goal was to figure out how we could use this distribution of volcano compositions at the surface to reverse-engineer how these components are distributed inside this upwelling mantle plume at depth,” Jackson said.

Each of the four distinct geochemical compositions, or endmembers, that the scientists identified in Samoan lavas contained low Helium-3 (He-3) and Helium-4 (He-4) ratios. The surprising discovery was that they all exhibited evidence for mixing with a fifth, rare primordial component consisting of high levels of He-3 and He-4.

“We have really strong evidence that the bulk of the plume is made of the high Helium-3, -4 component,” Jackson said. “That tells us that most of this plume is primordial material and there are other materials hosted inside of this plume with low Helium-3, -4, and these are likely crustal materials sent into the mantle at ancient subduction zones.”

The unique isotopic topology revealed by the researchers’ analysis showed that the four low-helium endmembers do not mix efficiently with one another. However, each of them mixes with the high He-3 and He-4 component.

“This unique set of mixing relationships requires a specific geometry for the four geochemical flavors within the upwelling plume: They must be hosted within a matrix that is composed of the rare fifth component with high He-3,” Jackson explained. “This new constraint on plume structure has important implications for how deep mantle material is entrained in plumes, and it gives us the clearest picture yet for the chemical structure of an upwelling mantle plume.”

Co-authors of the paper include Stanley R. Hart, Jerzy S. Blusztajn and Mark D. Kurz of the Woods Hole Oceanographic Institution, Jasper G. Konter of the University of Hawaii and Kenneth A. Farley of the California Institute of Technology. This research was funded by the National Science Foundation. 

Contact Info: 


This map of the Samoan hotspot shows its division into three parallel volcanic lineaments.

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Julie Cohen | Eurek Alert!
Further information:
http://www.news.ucsb.edu/2014/014452/journey-center-earth

Further reports about: Earth Hawaii Helium-3 Samoan Science hotspots mantle mantle plume materials mixing volcanic volcano volcanoes

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>