Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jade sheds light on Guatemala's geologic history

30.07.2009
New research shows complex plate tectonic movement along the Motagua fault

A new analysis of jade found along the Motagua fault that bisects Guatemala is underscoring the fact that this region has a more complex geologic history than previously thought.

Because jade and other associated metamorphic rocks are found on both sides of the fault, and because the jade to the north is younger by about 60 million years, a team of geologists posits in a new research paper that the North American and Caribbean plates have done more than simply slide past each other: they have collided. Twice.

"Now we understand what has happened in Guatemala, geologically," says one of the authors, Hannes Brueckner, Professor of Geology at Queens College, City University of New York. "Our new research is filling in information about plate tectonics for an area of the world that needed sorting."

Jade is a cultural term for two rare metamorphic rocks known as jadeitite (as discussed in the current research) and nephrite that are both extremely tough and have been used as tools and talismans throughout the world. The jadeitite (or jadeite jade) is a sort of scar tissue from some collisions between Earth's plates. As ocean crust is pushed under another block, or subducted, pressure increases with only modest rise in temperature, squeezing and drying the rocks without melting them. Jade precipitates from fluids flowing up the subduction channel and into the chilled, overlying mantle that becomes serpentinite. The serpentinite assemblage, which includes jade and has a relatively low density, can be uplifted during subsequent continental collisions and extruded along the band of the collision boundary, such as those found in the Alps, California, Iran, Russia, and other parts of the world.

The Motagua fault is one of three subparallel left-lateral strike-slip faults (with horizontal motion) in Guatemala and forms the boundary between the North American and Caribbean tectonic plates. In an earlier paper, the team of authors found evidence of two different collisions by dating mica found in collisional rocks (including jade) from the North American side of the fault to about 70 million years ago and from the southern side (or the Caribbean plate) to between 120 and 130 million years ago. But mica dates can be "reset" by subsequent heating. Now, the authors have turned to eclogite, a metamorphic rock that forms from ocean floor basalt in the subduction channel. Eclogite dates are rarely reset, and the authors found that eclogite from both sides of the Motagua dates to roughly 130 million years old.

The disparate dating of rocks along the Motagua can be explained by the following scenario: a collision 130 million years ago created a serpentinite belt that was subsequently sliced into segments. Then, after plate movement changed direction about 100 million years ago, a second collision between one of these slices and the North American plate reset the mica clocks in jadeitite found on the northern side of the fault to 70 million years. Finally, plate motion in the last 70 million years juxtaposed the southern serpentinites with the northern serpentinites, which explains why there are collisional remnants on both sides of the Motagua.

"All serpentinites along the fault line formed at the same time, but the northern assemblage was re-metamorphosed at about 70 million year ago. There are two collision events recorded in the rocks observed today, one event on the southern side and two on the northern," explains author George Harlow, Curator in the Division of Earth and Planetary Sciences at the American Museum of Natural History. "Motion between plates is usually not a single motion—it is a series of motions.

This research was published in Earth and Planetary Science Letters. In addition to Brueckner and Harlow, authors on this research paper include Hans Lallemant of Rice University in Houston, Texas; Virginia Sisson of the University of Houston in Texas; Sidney Hemming of Columbia University's Lamont-Doherty Earth Observatory, New York; Uwe Martens of Stanford University, California; Tatsuki Tsujimori of Okayama University in Japan, and Sorena Sorenson of the National Museum of Natural History in Washington, D.C. The National Science Foundation funded the research.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>