Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron on its route to the sea-floor: A new path

11.02.2009
'Dust' from iron can float up from hydrothermal vents

Iron dust, the rarest nutrient for most marine life, can be washed down by rivers or blown out to sea or--a surprising new study finds--float up from the sea floor in the material spewed from hydrothermal vents.

The discovery, published online Feb. 8, 2009, in a paper in the journal Nature Geoscience, connects life at the surface to events occurring at extreme depths and pressures. The two worlds were long assumed to have little interaction.

A team from the University of Minnesota, University of Southern California, Woods Hole Oceanographic Institution and Lawrence Berkeley National Laboratory took samples from the East Pacific Rise, a volcanic mid-ocean ridge. The group found that organic compounds capture some iron from hydrothermal vents, enabling it to be carried away in seawater, according to scientist Brandy Toner of the University of Minnesota, lead author of the Nature Geoscience paper. Iron trapped in this way does not rust. For the scientists, discovering shiny iron in the ocean was like fishing a dry sponge out of a bath.

"Everything we know about the chemical properties of iron tells us that it should be oxidized; it should be rusted," said Katrina Edwards of USC.

The metal's purity has practical value. Aquatic organisms metabolize pure iron much more easily than its rusted form, Edwards said. How much captured iron floats into surface waters remains unknown. But any that does would nourish ocean life more efficiently than the oxidized iron from regular sources.

"This is one potential mechanism of creating essentially a natural iron fertilization mechanism that's completely unknown," Edwards said.

"A major question involves the importance of bacteria-catalyzed oxidation versus the conventional rusting process," said Don Rice, director of the National Science Foundation (NSF)'s Chemical Oceanography Program, which funded the research. "How much of the world's iron is deposited with bacterial help? And how much escapes both bacteria and the natural oxidation process?"

The sea floor may hold the answer.

Some marine scientists have called for iron fertilization because of the metal's crucial place in the aquatic food chain. Iron is the limiting nutrient in most parts of the oceans, meaning that its scarcity is the only thing standing in the way of faster growth. Iron's equivalent on land is nitrogen. Crop yields rose dramatically during the 20th century in part because of increased nitrogen fertilization. The expedition team discovered the phenomenon of iron capture serendipitously. Edwards and collaborators were studying deep-sea bacteria that catalyze the iron rusting reaction. Of the possible reactions that support microbial communities on rocks, iron oxidation is one of the most important, Edwards explained. Unfortunately, she added, "it's probably the least well understood major metabolic pathway in the microbial world."

The bacteria involved do not grow well in culture, so the researchers are using a range of molecular techniques to search for genes related to iron oxidation. The samples were collected continuously using a remote sampling device deployed and retrieved from the research vessel Atlantis between May 16 and June 27, 2006.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>