Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron isotopes as a tool in oceanography

04.08.2009
New research involving scientists from the National Oceanography Centre, Southampton (NOCS) highlights the potential utility of iron isotopes for addressing important questions in ocean science. The findings are published in the August edition of the journal Geology.

Large regions of the world's oceans have low primary production despite having plenty of macronutrients such as phosphate, nitrate and silicate. This is due a shortage of the essential micro-nutrient iron, which is needed for the growth of phytoplankton.

These tiny, plant-like organisms sit at the base of the marine food chain and collectively draw vast amounts of the greenhouse gas carbon dioxide down from the atmosphere through the process of photosynthesis.

A proportion of the carbon is exported to the deep ocean, making the oceans a major carbon dioxide sink, without which global warming would rapidly accelerate. The natural supply of iron to such 'High Nutrient Low Chlorophyll (HNLC) regions is therefore, albeit indirectly, an important determinant of climate.

The importance of dissolved iron in seawater derived from bottom (benthic) sediments is increasingly recognised as being important. Around the continental margins, in particular, iron is released from the sediments during the decomposition of organic carbon by dissimilatory iron-reducing bacteria - micro-organisms that use elemental iron to obtain energy. This leads to the enrichment of iron in pore fluids and bottom waters. However the ubiquity of sedimentary iron inputs to seawater remains unknown.

Different biological and chemical processes can leave behind characteristic isotopic 'fingerprints'. Of specific interest here, iron isotopes in sediment pore fluids may be a unique tracer of sediment respiration by dissimilatory iron-reducing bacteria.

Dissimilatory iron reduction is thought to be one of the earliest metabolic pathways on Earth , thus sedimentary iron isotopes may also be useful in reconstructing past iron cycling in the ancient ocean.

Pore-fluid iron isotope measurements have so far been restricted to the continental shelves where the supply of carbon is typically high and dissimilatory iron reduction is extensive, precluding comparisons with low-carbon, deep-water environments. William Homoky, who is a research student at the University of Southampton's School of Ocean and Earth Sciences based at NOCS, and his colleagues have helped fill this gap be measuring iron isotopes in pore fluids from both the Eel River shelf on the northern California margin (120 m water depth), and deep-sea sediments from the Southern Ocean around the Crozet Island Plateau (3000� m water depth), about 1400 miles southeast of South Africa.

"We are excited by our findings not only because they represent the first measurements of their kind, but because they are telling us something important about iron cycling processes in the deep-sea, which can inform future iron isotope investigations in ancient rocks and the modern oceans," said William Homoky.

They find that the composition of iron isotopes in the pore fluids reflects the different extent of sedimentary iron recycling between the two sites. Specifically, the pore-fluid iron isotope compositions reflect the extent of iron recycling during early diagenesis, which is driven by organic carbon inputs from the overlying water column.

The researchers believe that iron isotope processing in carbon-limited environments, such as the deep-sea, is important and that it should help future interpretations of the rock record. "Additionally," they say, "the unique isotopic fingerprint of pore fluid iron in continental shelf settings is confirmed, highlighting the potential for iron isotopes to trace the inputs of continental shelf-derived iron in seawater."

Current thesis research aims to improve our understanding of iron cycling between sediments and seawater and compares the affects of contrasting sediment geochemistry on iron flux generating processes.

"In the future I would like to examine processes of sedimentary iron cycling in the high-latitudes, where sediments are subject to enhanced rates of environmental change due to changing climate in these regions," Said Homoky.

This work was supported by the UK Natural Environment Research Council (NERC) and the US National Science Foundation (NSF). Research cruises were undertaken on the RV Wecoma and the RRS Discovery.

Contact information:

For more information contact the NOCS Press Officer Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 02380596100).

Author contacts:

William Homoky: Telephone +44 (0) 23 80596507; Email w.homoky@noc.soton.ac.uk

Reference:

Homoky, W., S. Severmann, S., Mills, R., Statham, P. & Fones, G. Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: Evidence from continental shelf and deep-sea sediments. Geology XXX, xxxx-xxxx (2009).

The authors are William Homoky (NOCS), S. Severmann (Rutgers University), Rachel Mills (NOCS), Peter Statham (NOCS), and G. Fones (University of Portsmouth).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>