Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron isotopes as a tool in oceanography

04.08.2009
New research involving scientists from the National Oceanography Centre, Southampton (NOCS) highlights the potential utility of iron isotopes for addressing important questions in ocean science. The findings are published in the August edition of the journal Geology.

Large regions of the world's oceans have low primary production despite having plenty of macronutrients such as phosphate, nitrate and silicate. This is due a shortage of the essential micro-nutrient iron, which is needed for the growth of phytoplankton.

These tiny, plant-like organisms sit at the base of the marine food chain and collectively draw vast amounts of the greenhouse gas carbon dioxide down from the atmosphere through the process of photosynthesis.

A proportion of the carbon is exported to the deep ocean, making the oceans a major carbon dioxide sink, without which global warming would rapidly accelerate. The natural supply of iron to such 'High Nutrient Low Chlorophyll (HNLC) regions is therefore, albeit indirectly, an important determinant of climate.

The importance of dissolved iron in seawater derived from bottom (benthic) sediments is increasingly recognised as being important. Around the continental margins, in particular, iron is released from the sediments during the decomposition of organic carbon by dissimilatory iron-reducing bacteria - micro-organisms that use elemental iron to obtain energy. This leads to the enrichment of iron in pore fluids and bottom waters. However the ubiquity of sedimentary iron inputs to seawater remains unknown.

Different biological and chemical processes can leave behind characteristic isotopic 'fingerprints'. Of specific interest here, iron isotopes in sediment pore fluids may be a unique tracer of sediment respiration by dissimilatory iron-reducing bacteria.

Dissimilatory iron reduction is thought to be one of the earliest metabolic pathways on Earth , thus sedimentary iron isotopes may also be useful in reconstructing past iron cycling in the ancient ocean.

Pore-fluid iron isotope measurements have so far been restricted to the continental shelves where the supply of carbon is typically high and dissimilatory iron reduction is extensive, precluding comparisons with low-carbon, deep-water environments. William Homoky, who is a research student at the University of Southampton's School of Ocean and Earth Sciences based at NOCS, and his colleagues have helped fill this gap be measuring iron isotopes in pore fluids from both the Eel River shelf on the northern California margin (120 m water depth), and deep-sea sediments from the Southern Ocean around the Crozet Island Plateau (3000� m water depth), about 1400 miles southeast of South Africa.

"We are excited by our findings not only because they represent the first measurements of their kind, but because they are telling us something important about iron cycling processes in the deep-sea, which can inform future iron isotope investigations in ancient rocks and the modern oceans," said William Homoky.

They find that the composition of iron isotopes in the pore fluids reflects the different extent of sedimentary iron recycling between the two sites. Specifically, the pore-fluid iron isotope compositions reflect the extent of iron recycling during early diagenesis, which is driven by organic carbon inputs from the overlying water column.

The researchers believe that iron isotope processing in carbon-limited environments, such as the deep-sea, is important and that it should help future interpretations of the rock record. "Additionally," they say, "the unique isotopic fingerprint of pore fluid iron in continental shelf settings is confirmed, highlighting the potential for iron isotopes to trace the inputs of continental shelf-derived iron in seawater."

Current thesis research aims to improve our understanding of iron cycling between sediments and seawater and compares the affects of contrasting sediment geochemistry on iron flux generating processes.

"In the future I would like to examine processes of sedimentary iron cycling in the high-latitudes, where sediments are subject to enhanced rates of environmental change due to changing climate in these regions," Said Homoky.

This work was supported by the UK Natural Environment Research Council (NERC) and the US National Science Foundation (NSF). Research cruises were undertaken on the RV Wecoma and the RRS Discovery.

Contact information:

For more information contact the NOCS Press Officer Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 02380596100).

Author contacts:

William Homoky: Telephone +44 (0) 23 80596507; Email w.homoky@noc.soton.ac.uk

Reference:

Homoky, W., S. Severmann, S., Mills, R., Statham, P. & Fones, G. Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: Evidence from continental shelf and deep-sea sediments. Geology XXX, xxxx-xxxx (2009).

The authors are William Homoky (NOCS), S. Severmann (Rutgers University), Rachel Mills (NOCS), Peter Statham (NOCS), and G. Fones (University of Portsmouth).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>