Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State scientist develops lab machine to study glacial sliding related to rising sea levels

11.11.2009
Neal Iverson opened his laboratory's walk-in freezer and said the one-of-a-kind machine inside could help scientists understand how glaciers slide across their beds. And that could help researchers predict how glaciers will react to climate change and contribute to rising sea levels.

Iverson is an Iowa State University professor of geological and atmospheric sciences. He's worked for three years on his big new machine, which is over nine feet tall, that he calls a glacier sliding simulator.

At the center of the machine is a ring of ice about eight inches thick and about three feet across. Below the ice is a hydraulic press that can put as much as 170 tons of force on the ice, creating pressures equal to those beneath a glacier 1,300 feet thick. Above are motors that can rotate the ice ring at its centerline at speeds of 100 to 7,000 feet per year.

Either the speed of the ice or the stress dragging it forward can be controlled. Around the ice is circulating fluid - its temperature controlled to 1/100th of a degree Celsius - that keeps the ice at its melting point so it slides on a thin film of water.

As Iverson starts running experiments with the simulator this month, he'll be looking for data that help explain glacier movement.

"For a particular stress, which depends on a glacier's size and shape, we'd like to know how fast a glacier will slide," Iverson said.

Glacier sliding is something that matters far from the ice fields. As the climate warms, Iverson said glaciers slide faster. When they hit coasts, they dump ice into the ocean. And when those icebergs melt they contribute to rising sea levels.

But there's a lot about the process researchers still don't know.

"We can't predict how fast glaciers slide - even to a factor of 10," Iverson said. "We don't know enough about how they slide to do that."

And so Iverson came up with the idea of a glacier in a freezer that allows him to isolate effects of stress, temperature and melt-water on speeds of glacier sliding.

The project is supported by a $529,922 grant from the National Science Foundation. While Iverson had a rough design for the simulator, he said a team of three engineers from the U.S. Department of Energy's Ames Laboratory - Terry Herrman, Dan Jones and Jerry Musselman - improved the design and turned it into a working machine.

Iverson said the machine won't simulate everything about glacier sliding.

"The fact is we can't simulate the real process," he said. "We can only simulate key elements of the process. The purpose of these experiments will be to idealize how the system works and thereby learn fundamentals of the sliding process that can't be learned in the field because of the complexity there."

Iverson, who also does field studies at glaciers in Sweden and Norway, said glaciology needs work on the ground and in the lab. But it's been decades since anybody has attempted the kind of laboratory simulations he'll be doing.

"There hasn't been a device to do this," Iverson said. "And so there haven't been any experiments."

To change that, Iverson is pulling on a coat, hat and gloves and working in his lab's freezer. He has ice rings to build. Equipment to calibrate. And experiments to run.

Neal Iverson | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>