Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers find, test winds extending far away from Alabama tornado’s path

10.04.2012
Christopher Karstens was on the ground studying the damage caused by the deadly April 27, 2011, tornado that hit Tuscaloosa and Birmingham, Ala.

It was just a week after the tornado. He was between the two cities, in the rough country of the southern Appalachians about 20 miles northeast of Tuscaloosa. He said it's terrain that's "beyond hilly." It's covered by dense forest and clogged by high brush that's tough to walk through. A hike of about 100 yards sometimes took as long as 45 minutes.

It was a perfect place for Karstens - a doctoral student from Atlantic who's studying under the direction of Bill Gallus, a professor of geological and atmospheric sciences - to study the effects of complex terrain on the structure of a tornado.

The study is part of a larger Iowa State research program led by Partha Sarkar, a professor of aerospace engineering and director of the university's Wind Simulation and Testing Laboratory. The lab includes several conventional wind tunnels and a Tornado/Microburst Simulator that has been fully functional since 2005. The Tornado/Microburst Simulator has helped researchers attract about $2.3 million from the National Oceanic and Atmospheric Administration and $580,000 from the National Science Foundation to study the impacts of tornado and microburst winds near the ground and their effects on buildings and other structures. One goal is to develop innovative ways to make structures, particularly low-rise buildings, stand up to tornadoes, hurricanes, gust fronts and microbursts from thunderstorms.

Iowa State's tornado research teams have included Sarkar; Gallus; Hui Hu and Vinay Dayal, associate professors of aerospace engineering; Fred Haan, an associate professor of mechanical engineering at the Rose-Hulman Institute of Technology in Terre Haute, Ind., and former aerospace engineering faculty member at Iowa State; Sri Sritharan, professor of civil, construction and environmental engineering; and Gene Takle, professor of agronomy and geological and atmospheric sciences.

"We've learned a lot in terms of the distribution of wind and in terms of the interaction of wind with structures and terrain," said Sarkar.

Sarkar said the researchers have found, for example, that when a tornado blows over rough terrain - forests or densely built cities - the structure of the tornado changes. The swirl and maximum rotational speed of the tornado decrease and the vortex spins tighter with a smaller core.

Karstens took that study further by looking at what happens to a tornado when it hits complex terrain such as cliffs, slopes and valleys. That's why Karstens joined other researchers studying the damage caused by the Tuscaloosa-Birmingham tornado.

The researchers looked at the damage to homes and buildings in the cities - part of their work to develop structures that can withstand high winds. Then Karstens headed for the hills to study the damage there.

He hiked to the storm path and noted damage on the ground and in the trees. He looked for signs that the terrain had disrupted the tornado as it moved up and down the steep slopes. He hiked to the top of valleys so he could take pictures of the damage below.

Back in Ames, he also studied aerial photos of the storm damage. That's when he noticed that trees along valleys far from the tornado path were damaged by high winds.

Karstens returned to the area last January for a second and closer look at specific locations he had identified. He looked at how the damage changed as the storm moved up and over the low mountains. He studied how root and soil conditions could have influenced the storm damage. And he explored side valleys perpendicular and to the left of the tornado's path to see the storm damage he noticed on the aerial photographs.

"It was very beneficial to go," Karstens said. "By physically observing the damage I could identify the situation, use some intuition and interpret what happened. That can lead to new ideas and thoughts."

One thought he took back to campus is that the perpendicular valleys provided a channel for the high winds and kept them going far from the actual tornado.

To test the theory, Karstens built a 32-foot by 20-foot 3-D foam replica of a 2-mile by 3-mile section of the same Alabama countryside he explored on foot. Then he ran Iowa State's Tornado/Microburst Simulator over the model terrain, taking wind readings inside the various valleys.

Karstens, who has accepted a research job at the Cooperative Institute for Mesoscale Meteorological Studies in Norman, Okla., is still analyzing the data. But he thinks he's onto something new.

"For meteorology, this can add another piece to the puzzle," he said. "It can help us understand the near-surface flow of winds in tornadoes."

Christopher Karstens | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>