Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IOW expedition studies eddies in the Baltic Sea to collect data for im-proving climate modelling

21.06.2016

On June 18, 2016, a research team under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) set out from Rostock port aboard the research vessel ELISABETH MANN BORGESE for a 9-day cruise into a sea area south of Bornholm island. The expedition focuses on the oceanographic analysis of eddy structures in the surface layer of the Baltic Sea and their impact on marine currents as well as microorganisms. IOW’s expedition contributes to the project “Clockwork Ocean” of the Helmholtz-Zentrum Geesthacht – Centre for Materials and Coastal Research (HZG), which for the first time employs a manned zeppelin that cooperates with research vessels for the study of marine eddies.

Marine currents consist of a great number of eddies that vary in dimension from a few millimetres to several hundred kilometres. Even the smallest of them can influence huge ocean currents like the Gulf Stream along a causal chain and thereby can noticeably impact our climate. Details of the underlying mechanisms, however, are only poorly understood. The current expedition of the ELISABETH MANN BORGESE aims at contributing to our understanding of ocean eddies in general and their role as climate impact factors in particular.


Participates in the big hunt for tiny turbulences on the Baltic Sea: the IOW research vessel ELISABETH MANN BORGESE

IOW / S. Kube


Coordinates the expedition of the ELISABETH MANN BORGESE: chief scientist Lars Umlauf

IOW / R. Prien

“The Baltic Sea is an ideal research area, because it is much easier to study these processes in great detail in an inland sea than under the harsh conditions of the open ocean,” explains IOW physicist and cruise chief scientist Lars Umlauf, who coordinates the expedition’s international 12-person research team.

Together with HZG colleagues, the IOW team focuses on eddy structures in the sea’s surface layer. There, the eddies are in constant contact with the atmosphere. This is why it is presumed that they have a significant influence on the thermal exchange between the atmosphere and the ocean and on how much of the greenhouse gas CO2 the latter can absorb.

Therefore, the researchers will analyse the structure of the water column in the top 30 to 40 metres very thoroughly by measuring standard parameters such as temperature and salinity as well as by employing specialized probes that register tiny turbulences in the size range of millimetres and centimetres. These probes are mounted on two ocean gliders, which cruise autonomously through the water like underwater sailplanes, and on a measuring platform that is attached to a mooring on the seafloor and ascends and descends through the water column at predefined intervals.

The collected data will be used for the development of models, which will allow for a better understanding of mixing processes in the water and exchange processes between the atmosphere and the sea.

“For us, the expedition is a kick-off for our work within the collaborative research center ‘Energy Transfers in Atmosphere and Ocean’, which is funded by the German Research Association (DFG) with 9 million Euros in total. It officially starts on July 1 and is intended to ultimately improve the predictive accuracy of our climate models,” says so Lars Umlauf.

Scientists from the Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research (AWI), who also participate in the current expedition of the ELISABETH MANN BORGESE, will take water samples to analyse by means of molecular biological methods, whether the eddies provide a suitable habitat for certain microorganisms.

IOW’s research cruise is integrated into the extensive measuring campaign “Clockwork Ocean”, which takes place simultaneously and is coordinated by the HZG. As a premiere in marine research, a manned zeppelin is used to constantly provide highly precise infrared camera aerial photos of surface eddies to the scientists on board of the ELISABETH MANN BORGESE and several other, smaller research vessels. Therefore, smooth team work between the various working groups will be as crucial to the expedition’s success as the employed technology: “For us, HZG’s big ‘Clockwork Ocean’ initiative is very important. The zeppelin will help us to quickly identify and reach interesting eddy structures within the research area. In turn, the zeppelin’s infrared measurements, which only analyse the top millimetres of the water column, are very well supplemented by our measurements which cover the whole depth of the surface layer. By pooling their resources, all participating institutions have gained a lot more than what they would have achieved on their own,” Lars Umlauf concludes.

*Scientific contact:
Dr. Lars Umlauf | lars.umlauf@io-warnemuende.de

*Further information on the HZG project “Clockwork Ocean”:
http://www.uhrwerk-ozean.de/index.html.en

*Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 88 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.6 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>