Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IOW expedition studies eddies in the Baltic Sea to collect data for im-proving climate modelling


On June 18, 2016, a research team under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) set out from Rostock port aboard the research vessel ELISABETH MANN BORGESE for a 9-day cruise into a sea area south of Bornholm island. The expedition focuses on the oceanographic analysis of eddy structures in the surface layer of the Baltic Sea and their impact on marine currents as well as microorganisms. IOW’s expedition contributes to the project “Clockwork Ocean” of the Helmholtz-Zentrum Geesthacht – Centre for Materials and Coastal Research (HZG), which for the first time employs a manned zeppelin that cooperates with research vessels for the study of marine eddies.

Marine currents consist of a great number of eddies that vary in dimension from a few millimetres to several hundred kilometres. Even the smallest of them can influence huge ocean currents like the Gulf Stream along a causal chain and thereby can noticeably impact our climate. Details of the underlying mechanisms, however, are only poorly understood. The current expedition of the ELISABETH MANN BORGESE aims at contributing to our understanding of ocean eddies in general and their role as climate impact factors in particular.

Participates in the big hunt for tiny turbulences on the Baltic Sea: the IOW research vessel ELISABETH MANN BORGESE

IOW / S. Kube

Coordinates the expedition of the ELISABETH MANN BORGESE: chief scientist Lars Umlauf

IOW / R. Prien

“The Baltic Sea is an ideal research area, because it is much easier to study these processes in great detail in an inland sea than under the harsh conditions of the open ocean,” explains IOW physicist and cruise chief scientist Lars Umlauf, who coordinates the expedition’s international 12-person research team.

Together with HZG colleagues, the IOW team focuses on eddy structures in the sea’s surface layer. There, the eddies are in constant contact with the atmosphere. This is why it is presumed that they have a significant influence on the thermal exchange between the atmosphere and the ocean and on how much of the greenhouse gas CO2 the latter can absorb.

Therefore, the researchers will analyse the structure of the water column in the top 30 to 40 metres very thoroughly by measuring standard parameters such as temperature and salinity as well as by employing specialized probes that register tiny turbulences in the size range of millimetres and centimetres. These probes are mounted on two ocean gliders, which cruise autonomously through the water like underwater sailplanes, and on a measuring platform that is attached to a mooring on the seafloor and ascends and descends through the water column at predefined intervals.

The collected data will be used for the development of models, which will allow for a better understanding of mixing processes in the water and exchange processes between the atmosphere and the sea.

“For us, the expedition is a kick-off for our work within the collaborative research center ‘Energy Transfers in Atmosphere and Ocean’, which is funded by the German Research Association (DFG) with 9 million Euros in total. It officially starts on July 1 and is intended to ultimately improve the predictive accuracy of our climate models,” says so Lars Umlauf.

Scientists from the Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research (AWI), who also participate in the current expedition of the ELISABETH MANN BORGESE, will take water samples to analyse by means of molecular biological methods, whether the eddies provide a suitable habitat for certain microorganisms.

IOW’s research cruise is integrated into the extensive measuring campaign “Clockwork Ocean”, which takes place simultaneously and is coordinated by the HZG. As a premiere in marine research, a manned zeppelin is used to constantly provide highly precise infrared camera aerial photos of surface eddies to the scientists on board of the ELISABETH MANN BORGESE and several other, smaller research vessels. Therefore, smooth team work between the various working groups will be as crucial to the expedition’s success as the employed technology: “For us, HZG’s big ‘Clockwork Ocean’ initiative is very important. The zeppelin will help us to quickly identify and reach interesting eddy structures within the research area. In turn, the zeppelin’s infrared measurements, which only analyse the top millimetres of the water column, are very well supplemented by our measurements which cover the whole depth of the surface layer. By pooling their resources, all participating institutions have gained a lot more than what they would have achieved on their own,” Lars Umlauf concludes.

*Scientific contact:
Dr. Lars Umlauf |

*Further information on the HZG project “Clockwork Ocean”:

*Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 |
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 |

The IOW is a member of the Leibniz Association with currently 88 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.6 billion Euros. (

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>