Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team of researchers finds a link between cold European winters and solar activity

27.08.2012
Studies of Germany’s largest river reveal a correlation between periods of low activity of the sun and regional cooling

Scientists have long suspected that the Sun's 11-year cycle influences climate of certain regions on Earth. Yet records of average, seasonal temperatures do not date back far enough to confirm any patterns.


Scan of a historic postcard: Frozen Rhine river close to Mainz, winter 1962/1963, with one of the Mainz signature bridges in the background.
©: Frank Sirocko

Now, armed with a unique proxy, an international team of researchers show that unusually cold winters in Central Europe are related to low solar activity - when sunspot numbers are minimal. The freezing of Germany's largest river, the Rhine, is the key.

Although the Earth's surface overall continues to warm, the new analysis has revealed a correlation between periods of low activity of the Sun and of some cooling - on a limited, regional scale in Central Europe, along the Rhine. "The advantage with studying the Rhine is because it's a very simple measurement," said Professor Dr. Frank Sirocko, lead author of a paper on the study and Professor of Sedimentology and Palaeoclimatology at the Institute of Geosciences of Johannes Gutenberg University Mainz. "Freezing is special in that it's like an on-off mode. Either there is ice or there is no ice."

But how to find this information? Easily done: From the early 19th through the mid-20th centuries, riverboat men used the Rhine river for cargo transport. And so docks along the river have annual records of when ice clogged the waterway and stymied shipping. The scientists used these easily accessible documents, as well as other additional historical accounts, to determine the number of freezing episodes since 1780. Sirocko and his colleagues found that between 1780 and 1963, the Rhine froze in multiple places fourteen different times. "The sheer size of the Rhine river means it takes extremely cold temperatures to freeze over making freezing episodes a good proxy for very cold winters in the region," Sirocko said.

Mapping the freezing episodes against the solar activity's 11-year cycle, a cycle of the Sun's varying magnetic strength and thus total radiation output, Sirocko and his colleagues determined that ten of the fourteen freezes occurred during years when the Sun had minimal sunspots. Using statistical methods, the scientists calculated that there is a 99% chance that extremely cold Central European winters and low solar activity are inherently linked. "We provide, for the first time, statistically robust evidence that the succession of cold winters during the last 230 years in Central Europe has a common cause," Sirocko said.

"With the new paper, Sirocko and his colleagues have added to the research linking solar variability with climate," said Thomas Crowley, Director of the Scottish Alliance for Geoscience, Environment, and Society, who was not involved with the study. "There is some suspension of belief in this link," Crowley said, "and this study tilts the argument more towards thinking there really is something to this link. If you have more statistical evidence to support this explanation, one is more likely to say it's true."

When sunspot numbers are down, the Sun emits less ultraviolet radiation. Less radiation means less heating of Earth's atmosphere, which sparks a change in the circulation patterns of the two lowest atmospheric levels, the troposphere and stratosphere. Such changes lead to climatic phenomena such as the North Atlantic Oscillation, a pattern of atmospheric pressure variations that influences wind patterns in the North Atlantic and weather behavior in regions in and around Europe. "Due to this indirect effect, the solar cycle does not impact hemispherically averaged temperatures, but only leads to regional temperature anomalies," said Stephan Pfahl, a co-author of the study who is now at the Institute for Atmospheric and Climate Science in Zurich. The authors show that this change in atmospheric circulation leads to cooling in parts of Central Europe but warming in other European countries, such as Iceland. "Sunspots do not necessarily cool the entire globe; their cooling effect is more localized," Sirocko said.

In fact, studies have suggested that the extremely cold European winters of 2010 and 2011 were the result of the North Atlantic Oscillation, which Sirocko and his team now link to the low solar activity during that time. The 2010 and 2011 European winters were so cold that they resulted in record lows for the month of November in certain countries. Some who dispute the occurrence of anthropogenic climate change argue that this two-year period shows that Earth's climate is not getting any warmer. But climate is a complex system, Sirocko said. And a short-term, localized dip in temperatures only temporarily masks the effects of a warming world. "Climate is not ruled by one variable," said Sirocko. "In fact, it has at least five or six variables. Carbon dioxide is certainly one, but solar activity is also one."

Moreover, the researchers also point out that, despite Central Europe's prospect to suffer colder winters every 11 years or so, the average temperature of those winters is increasing and has been for the past three decades. As one piece of evidence of that warming, the Rhine river has not frozen over since 1963. Sirocko said such warming results, in part, from climate change. To establish a more complete record of past temperature dips, the researchers are looking to other proxies, such as the spread of disease and migratory habits. "Disease can be transported by insects and rats, but during a strong freezing year that is not likely," said Sirocko. "Also, Romans used the Rhine to defend against the Germanics, but as soon as the river froze people could move across it. The freezing of the Rhine is very important on historical timescales."

However, it wasn’t the Rhine that first got Sirocko to thinking about the connection between freezing rivers and sunspot activity. In fact, it was a 125-mile ice-skating race he attended over 20 years ago in the Netherlands that sparked the scientist’s idea. "Skaters can only do this race every 10 or 11 years because that’s when the rivers freeze up," Sirocko said. "I thought to myself, ‘There must be a reason for this,’ and it turns out there is."

The study, conducted by researchers at Johannes Gutenberg and the Institute for Atmospheric and Climate Science in Zurich, Switzerland, is published in the Geophysical Research Letters, a journal of the American Geophysical Union (GPU).

Publication:
Sirocko, F., H. Brunck, and S. Pfahl (2012), Solar influence on winter severity in central Europe, Geophysical Research Letters, 39, L16704
DOI:10.1029/2012GL052412
http://www.agu.org/pubs/crossref/2012/2012GL052412.shtml

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15622_ENG_HTML.php
http://www.geocycles.de/eng/index.php
http://www.agu.org/

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>