Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team to drill beneath massive Antarctic ice shelf

10.11.2011
An international team of researchers funded by NASA and the National Science Foundation (NSF) will travel next month to one of Antarctica's most active, remote and harsh spots to determine how changes in the waters circulating under an active ice sheet are causing a glacier to accelerate and drain into the sea.

The science expedition will be the most extensive ever deployed to Pine Island Glacier. It is the area of the ice-covered continent that concerns scientists most because of its potential to cause a rapid rise in sea level. Satellite measurements have shown this area is losing ice and surrounding glaciers are thinning, raising the possibility the ice could flow rapidly out to sea.


Robert Bindschadler, an emeritus glaciologist with NASA Goddard Space Flight Center, was the first person to ever walk on the Pine Island Glacier ice shelf, in January 2008. Credit: NASA

The multidisciplinary group of 13 scientists, led by Robert Bindschadler, emeritus glaciologist of NASA's Goddard Space Flight Center in Greenbelt, Md., will depart from the McMurdo Station in Antarctica in mid-December and spend six weeks on the ice shelf. During their stay, they will use a combination of traditional tools and sophisticated new oceanographic instruments to measure the shape of the cavity underneath the ice shelf and determine how streams of warm ocean water enter it, move toward the very bottom of the glacier and melt its underbelly.

"The project aims to determine the underlying causes behind why Pine Island Glacier has begun to flow more rapidly and discharge more ice into the ocean," said Scott Borg, director of NSF's Division of Antarctic Sciences, the group that coordinates all U.S. research in Antarctica. "This could have a significant impact on global sea-level rise over the coming century."

Scientists have determined the interaction of winds, water and ice is driving ice loss from the floating glacier. Gusts of increasingly stronger westerly winds push cold surface waters away from the continent, allowing warmer waters that normally hover at depths below the continental shelf to rise. The upwelling warm waters spill over the border of the shelf and move along the sea floor, back to where the glacier rises from the bedrock and floats, causing it to melt.

The warm salty waters and fresh glacier melt water combine to make a lighter mixture that rises along the underside of the ice shelf and moves back to the open ocean, melting more ice on its way. How much more ice melts is what the team wants to find out, so it can improve projections of how the glacier will melt and contribute to sea-level rise.

In January 2008, Bindschadler was the first person to set foot on this isolated corner of Antarctica as part of initial reconnaissance for the expedition. Scientists had doubted it was even possible to reach the crevasse-ridden ice shelf. Bindschadler used satellite imagery to identify an area where helicopters could land safely to transport scientists and instrumentation to and from the ice shelf.

"The Pine Island Glacier ice shelf continues to be the place where the action is taking place in Antarctica," Bindschadler said. "It only can be understood by making direct measurements, which is hard to do. We're doing this hard science because it has to be done. The question of how and why it is melting is even more urgent than it was when we first proposed the project over five years ago."

The team will use a hot water drill to make a hole through the ice shelf. After the drill hits the ocean, the scientists will send a camera down into the cavity to observe the underbelly of the ice shelf and analyze the seabed lying approximately 1,640 feet (500 meters) below the ice. Next the team will lower an instrument package provided by oceanographer Tim Stanton of the Naval Postgraduate School in Monterrey, Calif., into the hole. The primary instrument, called a profiler, will move up and down a cable attached to the seabed, measuring temperature, salinity and currents from approximately 10 feet (3 meters) below the ice to just above the seabed.

A second hole will support a similar instrument array fixed to a pole stuck to the underside of the ice shelf. This instrument will measure how ice and water exchange heat. The team also will insert a string of 16 temperature sensors in the lowermost ice to freeze inside and become part of the ice shelf. The sensors will measure how fast heat is transmitted upward through the ice when hot flushes of water enter the ocean cavity.

Sridhar Anandakrishnan, a geophysicist with Pennsylvania State University in University Park, Pa., will study the shape of the ocean cavity and the properties of the bedrock under the Pine Island Glacier ice shelf through a technique called reflective seismology, which involves generating waves of energy by detonating small explosions and banging the ice with instruments resembling sledgehammers. Measurements will be taken in about three dozen spots using helicopters to move from one place to another.

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>