Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Greenland ice coring effort sets new drilling record in 2009

28.08.2009
Ancient ice cores expected to help scientists assess risks of abrupt climate change in future

A new international research effort on the Greenland ice sheet with the University of Colorado at Boulder as the lead U.S. institution set a record for single-season deep ice-core drilling this summer, recovering more than a mile of ice core that is expected to help scientists better assess the risks of abrupt climate change in the future.

The project, known as the North Greenland Eemian Ice Drilling, or NEEM, is being undertaken by 14 nations and is led by the University of Copenhagen. The goal is to retrieve ice from the last interglacial episode known as the Eemian Period that ended about 120,000 years ago. The period was warmer than today, with less ice in Greenland and 15-foot higher sea levels than present -- conditions similar to those Earth faces as it warms in the coming century and beyond, said CU-Boulder Professor Jim White, who is leading the U.S. research contingent.

While three previous Greenland ice cores drilled in the past 20 years covered the last ice age and the period of warming to the present, the deeper ice layers representing the warm Eemian and the period of transition to the ice age were compressed and folded, making them difficult to interpret, said White. Radar measurements taken through the ice sheet from above the NEEM site indicate the Eemian ice layers below are thicker, more intact and likely contain more accurate, specific information, he said.

"Every time we drill a new ice core, we learn a lot more about how Earth's climate functions," said White, "The Eemian period is the best analog we have for future warming on Earth."

Annual ice layers formed over millennia in Greenland by compressed snow reveal information on past temperatures and precipitation levels and the contents of ancient atmospheres, said White, who directs CU-Boulder's Institute of Arctic and Alpine Research. Ice cores exhumed during previous drilling efforts revealed abrupt temperature spikes of more than 20 degrees Fahrenheit in just 50 years in the Northern Hemisphere.

The NEEM team reached a depth of 5,767 feet in early August, where ice layers date to 38,500 years ago during a cold glacial period preceding the present interglacial, or warm period. The team hopes to hit bedrock at 8,350 feet at the end of next summer, reaching ice deposited during the warm Eemian period that lasted from roughly 130,000 to 120,000 years ago before the planet began to cool and ice up once again.

The NEEM project began in 2008 with the construction of a state-of-the-art facility, including a large dome, the drilling rig for extracting 3-inch-diameter ice cores, drilling trenches, laboratories and living quarters. The official drilling started in June of this year. The United States is leading the laboratory analysis of atmospheric gases trapped in bubbles within the NEEM ice cores, including greenhouse gases like carbon dioxide and methane, said White.

The NEEM project is led by the University of Copenhagen's Centre of Ice and Climate directed by Professor Dorthe Dahl-Jensen. The United States and Denmark are the two leading partners in the project. The U.S. effort is funded by the National Science Foundation's Office of Polar Programs.

"Evidence from ancient ice cores tell us that when greenhouse gases increase in the atmosphere, the climate warms," said White. "And when the climate warms, ice sheets melt and sea levels rise. If we see comparable rises in sea level in the future like we have seen in the ice-core record, we can pretty much say good-bye to American coastal cities like Miami, Houston, Norfolk, New Orleans and Oakland."

Increased warming on Earth also has a host of other potentially deleterious effects, including changes in ecosystems, wildlife extinctions, the growing spread of disease, potentially catastrophic heat waves and increases in severe weather events, according to scientists.

While ice cores pinpoint abrupt climate change events as Earth has passed in and out of glacial periods, the warming trend during the present interglacial period is caused primarily by human activities like fossil fuel burning, White said. "What makes this warming trend fundamentally different from past warming events is that this one is driven by human activity and involves human responsibility, morals and ethics."

Other nations involved in the project include the United States, Belgium, Canada, China, France, Germany, Iceland, Japan, Korea, the Netherlands, Sweden, Switzerland and the United Kingdom.

Other CU-Boulder participants in the NEEM effort include INSTAAR postdoctoral researcher Vasilii Petrenko and Environmental Studies Program doctoral student Tyler Jones. Other U.S. institutions collaborating in the international NEEM effort include Oregon State University, Penn State, the University of California, San Diego and Dartmouth College.

For more information on the NEEM project, including images and video, visit http://www.neem.ku.dk.

Jim White | EurekAlert!
Further information:
http://www.colorado.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>