Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Greenland ice coring effort sets new drilling record in 2009

28.08.2009
Ancient ice cores expected to help scientists assess risks of abrupt climate change in future

A new international research effort on the Greenland ice sheet with the University of Colorado at Boulder as the lead U.S. institution set a record for single-season deep ice-core drilling this summer, recovering more than a mile of ice core that is expected to help scientists better assess the risks of abrupt climate change in the future.

The project, known as the North Greenland Eemian Ice Drilling, or NEEM, is being undertaken by 14 nations and is led by the University of Copenhagen. The goal is to retrieve ice from the last interglacial episode known as the Eemian Period that ended about 120,000 years ago. The period was warmer than today, with less ice in Greenland and 15-foot higher sea levels than present -- conditions similar to those Earth faces as it warms in the coming century and beyond, said CU-Boulder Professor Jim White, who is leading the U.S. research contingent.

While three previous Greenland ice cores drilled in the past 20 years covered the last ice age and the period of warming to the present, the deeper ice layers representing the warm Eemian and the period of transition to the ice age were compressed and folded, making them difficult to interpret, said White. Radar measurements taken through the ice sheet from above the NEEM site indicate the Eemian ice layers below are thicker, more intact and likely contain more accurate, specific information, he said.

"Every time we drill a new ice core, we learn a lot more about how Earth's climate functions," said White, "The Eemian period is the best analog we have for future warming on Earth."

Annual ice layers formed over millennia in Greenland by compressed snow reveal information on past temperatures and precipitation levels and the contents of ancient atmospheres, said White, who directs CU-Boulder's Institute of Arctic and Alpine Research. Ice cores exhumed during previous drilling efforts revealed abrupt temperature spikes of more than 20 degrees Fahrenheit in just 50 years in the Northern Hemisphere.

The NEEM team reached a depth of 5,767 feet in early August, where ice layers date to 38,500 years ago during a cold glacial period preceding the present interglacial, or warm period. The team hopes to hit bedrock at 8,350 feet at the end of next summer, reaching ice deposited during the warm Eemian period that lasted from roughly 130,000 to 120,000 years ago before the planet began to cool and ice up once again.

The NEEM project began in 2008 with the construction of a state-of-the-art facility, including a large dome, the drilling rig for extracting 3-inch-diameter ice cores, drilling trenches, laboratories and living quarters. The official drilling started in June of this year. The United States is leading the laboratory analysis of atmospheric gases trapped in bubbles within the NEEM ice cores, including greenhouse gases like carbon dioxide and methane, said White.

The NEEM project is led by the University of Copenhagen's Centre of Ice and Climate directed by Professor Dorthe Dahl-Jensen. The United States and Denmark are the two leading partners in the project. The U.S. effort is funded by the National Science Foundation's Office of Polar Programs.

"Evidence from ancient ice cores tell us that when greenhouse gases increase in the atmosphere, the climate warms," said White. "And when the climate warms, ice sheets melt and sea levels rise. If we see comparable rises in sea level in the future like we have seen in the ice-core record, we can pretty much say good-bye to American coastal cities like Miami, Houston, Norfolk, New Orleans and Oakland."

Increased warming on Earth also has a host of other potentially deleterious effects, including changes in ecosystems, wildlife extinctions, the growing spread of disease, potentially catastrophic heat waves and increases in severe weather events, according to scientists.

While ice cores pinpoint abrupt climate change events as Earth has passed in and out of glacial periods, the warming trend during the present interglacial period is caused primarily by human activities like fossil fuel burning, White said. "What makes this warming trend fundamentally different from past warming events is that this one is driven by human activity and involves human responsibility, morals and ethics."

Other nations involved in the project include the United States, Belgium, Canada, China, France, Germany, Iceland, Japan, Korea, the Netherlands, Sweden, Switzerland and the United Kingdom.

Other CU-Boulder participants in the NEEM effort include INSTAAR postdoctoral researcher Vasilii Petrenko and Environmental Studies Program doctoral student Tyler Jones. Other U.S. institutions collaborating in the international NEEM effort include Oregon State University, Penn State, the University of California, San Diego and Dartmouth College.

For more information on the NEEM project, including images and video, visit http://www.neem.ku.dk.

Jim White | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>