Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insoluble Dust Plays Important Role in Cloud Formation

17.10.2011
New information on the role of insoluble dust particles in forming cloud droplets could improve the accuracy of regional climate models, especially in areas of the world that have significant amounts of mineral aerosols in the atmosphere. A more accurate accounting for the role of these particles could also have implications for global climate models.

Cloud properties can have a significant impact on climate, yet the effects of aerosols like dust is one of the more uncertain components of climate change models. Scientists have long recognized the importance of soluble particles, such as sea salt and sulfates, in creating the droplets that form clouds and lead to precipitation. But until now, the role of insoluble particles – mostly dust swept into the atmosphere from such sources as deserts – hasn’t figured significantly in climate models.

Using a combination of physics-based theory and laboratory measurement of droplet formation, researchers at the Georgia Institute of Technology have developed a model that can be added to existing regional and global climate simulations. The impacts of these refinements on cloud condensation nuclei (CCN) activity and droplet activation kinetics are still being studied.

“Understanding that insoluble dust forms more droplets than we thought it could, and that those droplets form close to the sources of the particles, could change our picture of how precipitation is formed in areas like the Mediterranean, Asia and other climate-stressed regions,” said Athanasios Nenes, a professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology.

The research was supported by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) and NASA. The findings were described at the Fall 2011 meeting of the American Chemical Society in Denver, and reported in the journals Geophysical Research Letters, Journal of Geophysical Research and Atmospheric Chemistry and Physics. A new paper on the global modeling impacts has been accepted for publication by the Journal of Geophysical Research.

Soluble particles nucleate droplets by absorbing water under conditions of high humidity. Insoluble materials such as dust cannot absorb water, so it was thought that they played little role in the formation of clouds and precipitation.

However, Nenes and collaborators realized that these dust particles could nucleate droplets in a different way – by adsorbing moisture onto their surfaces, much as moisture condenses on window glass during temperature changes. Some insoluble particles containing clay materials may also adsorb moisture, even though they don’t dissolve in it.

Working with Irina Sokolik, also a professor in the School of Earth and Atmospheric Sciences, Nenes and graduate student Prashant Kumar studied aerosol particles created from samples of desert soils from several areas of the world, including Northern Africa, East Asia/China and North America. In laboratory conditions simulating those of a saturated atmosphere, these insoluble particles formed cloud droplets, though the process was slower than the one producing droplets from soluble materials.

“We generated particles in the laboratory from materials we find in the atmosphere,” explained Nenes, who also holds a faculty appointment in Georgia Tech’s School of Chemical and Biomolecular Engineering. “These particles take up water using a mechanism that had not been considered before in models. It turns out that this process of adsorption soaks up enough water to form cloud droplets.”

The laboratory work showed that smaller particles were more likely than expected to generate droplets, and that their effectiveness as cloud condensation nuclei was affected by the type of minerals present, their size, morphology and processes affecting them in the atmosphere. The dust particles ranged in size from 100 nanometers up to a few microns.

These mineral aerosols may consist of iron oxides, carbonates, quartz and clays. They mainly originate from arid and semi-arid regions, and can remain suspended in the atmosphere for as long as several weeks, allowing them to be transported long distances from their original sources. In the atmosphere, the dust particles tend to accumulate soluble materials as they age.

“We can simulate what is happening to the particles as they get slowly coated with more and more soluble materials,” said Nenes. “As they get more and more soluble coatings on them, they become more hygroscopic.”

The researchers are now working with collaborators in Germany to incorporate their new theories into existing climate models to see how they may change the predictions. They also hope to carry out new field work to measure the activity of these insoluble aerosols in real-world conditions.

“We now need to study the cloud particles in the atmosphere and their ability to form droplets to verify our theory using real atmospheric data,” Nenes said. “We also need to look at dust and clouds from more regions of the world to make sure that the theory works for all of them.”

Clouds play an important role in governing climate, so adding new information about their formation could improve the accuracy of complex climate models.

“The reason that we care about particle-cloud interactions is that they introduce a lot of uncertainties in climate model predictions,” Nenes said. “Anything that can be done to improve these predictions by providing more specific cloud information would be helpful to projecting climate change.”

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: John Toon (404-894-6986)(jtoon@gatech.edu) or Abby Robinson (404-385-3364)(abby@innovate.gatech.edu).

Technical Contact: Athanasios Nenes (athanasios.nenes@gatech.edu).

Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>