Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into cloud formation

06.03.2012
Clouds have a profound effect on the climate, but we know surprisingly little about how they form.

Erika Sundén, researcher at the University of Gothenburg, Sweden, has studied how extremely small cloud particles can dispose of excess energy. This knowledge is necessary to understand processes in the atmosphere that affect global climate change.

The models that have been built to describe climate change contain a major source of uncertainty, namely the effects of clouds. The UN Intergovernmental Panel on Climate Change points out in its climate report for 2007 that new knowledge is needed in this field.

It is namely the case that clouds can act in two ways: they may be a mirror that reflects radiation from the sun back into space, and they may be a blanket that seals in the heat emitted by the Earth. Mapping the formation and dispersion of clouds may, therefore, be a key step in climate research.

“One important stage is understanding the fundamental properties of the particles involved”, says Erika Sundén, doctoral student at the Department of Physics, University of Gothenburg.

Ammonia may play an important role

Erika has studied small particles known as “clusters”, which contain between 3 and 300 molecules. One line of research has investigated how water clusters dissipate excess energy, and this will help to understand how water droplets grow and how they evaporate. These are the processes by which ice and liquid water are transformed into water vapour (gas).

Another line has investigated how the clusters are influenced by ammonia, which is an important component of the atmosphere.

“I investigated water clusters that contained a small fraction of ammonia, and compared these with pure water clusters. I was able to show that the ammonia contributed to the stability of the clusters, and prevented them evaporating so rapidly. It may be that ammonia plays an important role in the early stages of cloud formation”, she says.

Temperatures of -100 degrees

It is not easy to measure the heat capacity of clusters, and an important part of her research has been to develop a method that can be used in future studies. Put simply, you could say that she has created water clusters in air, drawn them into a vacuum, and then examined them as they disintegrate. This method led her to an unexpected discovery.

“The temperature inside these clusters was around -100 °C, so one would expect that their heat capacity would correspond to that of ice. Despite this, the heat capacity of medium-sized clusters was greater, intermediate between that of ice and liquid water. The importance of this for how clouds form will be the subject of further research”, she says.

New insights into space clouds

Erika Sundén presents in her thesis also studies into the cooling rate and radiation of carbon particles, which may be a component of space clouds. It has long been uncertain whether molecules can exist in the empty space between the stars and planets, since the density of atoms is so low. The first negatively charged carbon molecules were discovered in 2006, however, after which work has continued surveying the molecules that are present in space clouds.

“First radiation from space is measured, and then it’s a case of creating models that can explain the observations. We create in the lab charged molecules that may be present in these clouds, and investigate whether these molecules emit radiation and, if so, to what extent”, she says.

Erika Sundén’s thesis “Thermal Properties of Clusters and Molecules – Experiments on Evaporation, Thermionic Emission, and Radiative Cooling” was successfully defended on 24 February. It can be downloaded from: http://gupea.ub.gu.se/handle/2077/28349

For more information, please contact: Erika Sundén
E-mail: erikasunden@gmail.com
Mobile: +46 70 655 5233

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/28349

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>