Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into cloud formation

06.03.2012
Clouds have a profound effect on the climate, but we know surprisingly little about how they form.

Erika Sundén, researcher at the University of Gothenburg, Sweden, has studied how extremely small cloud particles can dispose of excess energy. This knowledge is necessary to understand processes in the atmosphere that affect global climate change.

The models that have been built to describe climate change contain a major source of uncertainty, namely the effects of clouds. The UN Intergovernmental Panel on Climate Change points out in its climate report for 2007 that new knowledge is needed in this field.

It is namely the case that clouds can act in two ways: they may be a mirror that reflects radiation from the sun back into space, and they may be a blanket that seals in the heat emitted by the Earth. Mapping the formation and dispersion of clouds may, therefore, be a key step in climate research.

“One important stage is understanding the fundamental properties of the particles involved”, says Erika Sundén, doctoral student at the Department of Physics, University of Gothenburg.

Ammonia may play an important role

Erika has studied small particles known as “clusters”, which contain between 3 and 300 molecules. One line of research has investigated how water clusters dissipate excess energy, and this will help to understand how water droplets grow and how they evaporate. These are the processes by which ice and liquid water are transformed into water vapour (gas).

Another line has investigated how the clusters are influenced by ammonia, which is an important component of the atmosphere.

“I investigated water clusters that contained a small fraction of ammonia, and compared these with pure water clusters. I was able to show that the ammonia contributed to the stability of the clusters, and prevented them evaporating so rapidly. It may be that ammonia plays an important role in the early stages of cloud formation”, she says.

Temperatures of -100 degrees

It is not easy to measure the heat capacity of clusters, and an important part of her research has been to develop a method that can be used in future studies. Put simply, you could say that she has created water clusters in air, drawn them into a vacuum, and then examined them as they disintegrate. This method led her to an unexpected discovery.

“The temperature inside these clusters was around -100 °C, so one would expect that their heat capacity would correspond to that of ice. Despite this, the heat capacity of medium-sized clusters was greater, intermediate between that of ice and liquid water. The importance of this for how clouds form will be the subject of further research”, she says.

New insights into space clouds

Erika Sundén presents in her thesis also studies into the cooling rate and radiation of carbon particles, which may be a component of space clouds. It has long been uncertain whether molecules can exist in the empty space between the stars and planets, since the density of atoms is so low. The first negatively charged carbon molecules were discovered in 2006, however, after which work has continued surveying the molecules that are present in space clouds.

“First radiation from space is measured, and then it’s a case of creating models that can explain the observations. We create in the lab charged molecules that may be present in these clouds, and investigate whether these molecules emit radiation and, if so, to what extent”, she says.

Erika Sundén’s thesis “Thermal Properties of Clusters and Molecules – Experiments on Evaporation, Thermionic Emission, and Radiative Cooling” was successfully defended on 24 February. It can be downloaded from: http://gupea.ub.gu.se/handle/2077/28349

For more information, please contact: Erika Sundén
E-mail: erikasunden@gmail.com
Mobile: +46 70 655 5233

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/28349

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>