Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation in spectroscopy could improve greenhouse gas detection

16.05.2013
Detecting greenhouse gases in the atmosphere could soon become far easier with the help of an innovative technique* developed by a team at the National Institute of Standards and Technology (NIST), where scientists have overcome an issue preventing the effective use of lasers to rapidly scan samples.

The team, which recently published its findings in the journal Nature Photonics, says the technique also could work for other jobs that require gas detection, including the search for hidden explosives and monitoring chemical processes in industry and the environment.


Fast, accurate spectroscopy scans of the atmosphere across a wide range of light frequencies could improve the performance of greenhouse gas measurement devices. This artist's conception compares current technology, which functions slowly and unevenly, with the NIST team's improvement, which changes the scanning laser's frequency evenly and more than 1,000 times faster, permitting full-spectrum scans within a few milliseconds.

Credit: Talbott, Gerskovic/NIST

Searching for faint whiffs of an unusual gas mixed in the air is called "trace gas sensing." By far, the most common method is spectroscopy—identifying gas molecules by the unique set of frequencies of light that each absorbs. The telltale pattern of dark lines in a spectrum indicates which gases are present in the mix. Accurately measuring the concentrations of relatively low-concentration gases, however, requires a lot of light, generated by a laser that can be tuned to different colors. Until now, tuning a laser to shine in a wide enough range of colors typically has required a mechanical device to change the frequency, but all the available methods adjust the laser too slowly to obtain meaningful snapshots of the turbulent atmosphere.

"One of the major goals in climate science is to combine a wide variety of high-accuracy atmospheric measurements, including ground-based, aircraft and satellite missions, in order to fully understand the carbon cycle," says the research team's David Long, a scientist in NIST's Chemical Sciences Division. "The technology we've developed is general enough to be applicable for each of these platforms. The high speed of the technique allows for very accurate measurements of atmospheric gases at rates which are faster than atmospheric changes in temperature and pressure due to turbulence."

The team found a solution using electronics that permit fast and discrete changes in frequency. The components—called an electro-optic modulator and an optical resonator—work together to alter the laser so that its light shines in a number of different frequencies, and then to filter these frequencies so that the laser only shines in one color at any given instant. The new method allows a wide range of different frequencies to pass through a gas sample in a few milliseconds or less, with the added benefit of providing a clearer and more accurate resulting spectrum than the previous "slow scan" methods could.

Long says that the Nature Photonics paper details the use of the technique in a controlled laboratory environment using a small sample chamber for ground-based measurements, but that the team has submitted other papers with data indicating the technique also could work at great distances—potentially allowing a scanner to be mounted on a vehicle, an aircraft or a satellite. The team also has applied for a patent on its work, he says.

*G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges and D.A. Long. Frequency-agile, rapid scanning spectroscopy. Nature Photonics, DOI: 10.1038/NPHOTON.2013.98, April 28, 2013.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>