Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation in spectroscopy could improve greenhouse gas detection

16.05.2013
Detecting greenhouse gases in the atmosphere could soon become far easier with the help of an innovative technique* developed by a team at the National Institute of Standards and Technology (NIST), where scientists have overcome an issue preventing the effective use of lasers to rapidly scan samples.

The team, which recently published its findings in the journal Nature Photonics, says the technique also could work for other jobs that require gas detection, including the search for hidden explosives and monitoring chemical processes in industry and the environment.


Fast, accurate spectroscopy scans of the atmosphere across a wide range of light frequencies could improve the performance of greenhouse gas measurement devices. This artist's conception compares current technology, which functions slowly and unevenly, with the NIST team's improvement, which changes the scanning laser's frequency evenly and more than 1,000 times faster, permitting full-spectrum scans within a few milliseconds.

Credit: Talbott, Gerskovic/NIST

Searching for faint whiffs of an unusual gas mixed in the air is called "trace gas sensing." By far, the most common method is spectroscopy—identifying gas molecules by the unique set of frequencies of light that each absorbs. The telltale pattern of dark lines in a spectrum indicates which gases are present in the mix. Accurately measuring the concentrations of relatively low-concentration gases, however, requires a lot of light, generated by a laser that can be tuned to different colors. Until now, tuning a laser to shine in a wide enough range of colors typically has required a mechanical device to change the frequency, but all the available methods adjust the laser too slowly to obtain meaningful snapshots of the turbulent atmosphere.

"One of the major goals in climate science is to combine a wide variety of high-accuracy atmospheric measurements, including ground-based, aircraft and satellite missions, in order to fully understand the carbon cycle," says the research team's David Long, a scientist in NIST's Chemical Sciences Division. "The technology we've developed is general enough to be applicable for each of these platforms. The high speed of the technique allows for very accurate measurements of atmospheric gases at rates which are faster than atmospheric changes in temperature and pressure due to turbulence."

The team found a solution using electronics that permit fast and discrete changes in frequency. The components—called an electro-optic modulator and an optical resonator—work together to alter the laser so that its light shines in a number of different frequencies, and then to filter these frequencies so that the laser only shines in one color at any given instant. The new method allows a wide range of different frequencies to pass through a gas sample in a few milliseconds or less, with the added benefit of providing a clearer and more accurate resulting spectrum than the previous "slow scan" methods could.

Long says that the Nature Photonics paper details the use of the technique in a controlled laboratory environment using a small sample chamber for ground-based measurements, but that the team has submitted other papers with data indicating the technique also could work at great distances—potentially allowing a scanner to be mounted on a vehicle, an aircraft or a satellite. The team also has applied for a patent on its work, he says.

*G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges and D.A. Long. Frequency-agile, rapid scanning spectroscopy. Nature Photonics, DOI: 10.1038/NPHOTON.2013.98, April 28, 2013.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>