Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injecting sulfate particles into stratosphere won't fully offset climate change

26.01.2012
As the reality and the impact of climate warming have become clearer in the last decade, researchers have looked for possible engineering solutions – such as removing carbon dioxide from the atmosphere or directing the sun's heat away from Earth – to help offset rising temperatures.

New University of Washington research demonstrates that one suggested method, injecting sulfate particles into the stratosphere, would likely achieve only part of the desired effect, and could carry serious, if unintended, consequences.

The lower atmosphere already contains tiny sulfate and sea salt particles, called aerosols, that reflect energy from the sun into space. Some have suggested injecting sulfate particles directly into the stratosphere to enhance the effect, and also to reduce the rate of future warming that would result from continued increases in atmospheric carbon dioxide.

But a UW modeling study shows that sulfate particles in the stratosphere will not necessarily offset all the effects of future increases in atmospheric carbon dioxide.

Additionally, there still is likely to be significant warming in regions where climate change impacts originally prompted a desire for geoengineered solutions, said Kelly McCusker, a UW doctoral student in atmospheric sciences.

The modeling study shows that significant changes would still occur because even increased aerosol levels cannot balance changes in atmospheric and oceanic circulation brought on by higher levels of atmospheric carbon dioxide.

"There is no way to keep the climate the way it is now. Later this century, you would not be able to recreate present-day Earth just by adding sulfate aerosols to the atmosphere," McCusker said.

She is lead author of a paper detailing the findings published online in December in the Journal of Climate. Coauthors are UW atmospheric sciences faculty David Battisti and Cecilia Bitz.

Using the National Center for Atmospheric Research's Community Climate System Model version 3 and working at the Texas Advanced Computing Center, the researchers found that there would, in fact, be less overall warming with a combination of increased atmospheric aerosols and increased carbon dioxide than there would be with just increased carbon dioxide.

They also found that injecting sulfate particles into the atmosphere might even suppress temperature increases in the tropics enough to prevent serious food shortages and limit negative impacts on tropical organisms in the coming decades.

But temperature changes in polar regions could still be significant. Increased winter surface temperatures in northern Eurasia could have serious ramifications for Arctic marine mammals not equipped to adapt quickly to climate change. In Antarctic winters, changes in surface winds would also bring changes in ocean circulation with potentially significant consequences for ice sheets in West Antarctica.

Even with geoengineering, there still could be climate emergencies – such as melting ice sheets or loss of polar bear habitat – in the polar regions, the scientists concluded. They added that the odds of a "climate surprise" would be high because the uncertainties about the effects of geoengineering would be added to existing uncertainties about climate change.

The research was funded by the Tamaki Foundation and the National Science Foundation.

For more information, contact McCusker at kelly@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>