Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injecting sulfate particles into stratosphere won't fully offset climate change

26.01.2012
As the reality and the impact of climate warming have become clearer in the last decade, researchers have looked for possible engineering solutions – such as removing carbon dioxide from the atmosphere or directing the sun's heat away from Earth – to help offset rising temperatures.

New University of Washington research demonstrates that one suggested method, injecting sulfate particles into the stratosphere, would likely achieve only part of the desired effect, and could carry serious, if unintended, consequences.

The lower atmosphere already contains tiny sulfate and sea salt particles, called aerosols, that reflect energy from the sun into space. Some have suggested injecting sulfate particles directly into the stratosphere to enhance the effect, and also to reduce the rate of future warming that would result from continued increases in atmospheric carbon dioxide.

But a UW modeling study shows that sulfate particles in the stratosphere will not necessarily offset all the effects of future increases in atmospheric carbon dioxide.

Additionally, there still is likely to be significant warming in regions where climate change impacts originally prompted a desire for geoengineered solutions, said Kelly McCusker, a UW doctoral student in atmospheric sciences.

The modeling study shows that significant changes would still occur because even increased aerosol levels cannot balance changes in atmospheric and oceanic circulation brought on by higher levels of atmospheric carbon dioxide.

"There is no way to keep the climate the way it is now. Later this century, you would not be able to recreate present-day Earth just by adding sulfate aerosols to the atmosphere," McCusker said.

She is lead author of a paper detailing the findings published online in December in the Journal of Climate. Coauthors are UW atmospheric sciences faculty David Battisti and Cecilia Bitz.

Using the National Center for Atmospheric Research's Community Climate System Model version 3 and working at the Texas Advanced Computing Center, the researchers found that there would, in fact, be less overall warming with a combination of increased atmospheric aerosols and increased carbon dioxide than there would be with just increased carbon dioxide.

They also found that injecting sulfate particles into the atmosphere might even suppress temperature increases in the tropics enough to prevent serious food shortages and limit negative impacts on tropical organisms in the coming decades.

But temperature changes in polar regions could still be significant. Increased winter surface temperatures in northern Eurasia could have serious ramifications for Arctic marine mammals not equipped to adapt quickly to climate change. In Antarctic winters, changes in surface winds would also bring changes in ocean circulation with potentially significant consequences for ice sheets in West Antarctica.

Even with geoengineering, there still could be climate emergencies – such as melting ice sheets or loss of polar bear habitat – in the polar regions, the scientists concluded. They added that the odds of a "climate surprise" would be high because the uncertainties about the effects of geoengineering would be added to existing uncertainties about climate change.

The research was funded by the Tamaki Foundation and the National Science Foundation.

For more information, contact McCusker at kelly@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>