Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

India joined with Asia 10 million years later than previously thought

07.02.2013
New timeline suggests India's size before this collision was much smaller than generally assumed

The peaks of the Himalayas are a modern remnant of massive tectonic forces that fused India with Asia tens of millions of years ago. Previous estimates have suggested this collision occurred about 50 million years ago, as India, moving northward at a rapid pace, crushed up against Eurasia.

The crumple zone between the two plates gave rise to the Himalayas, which today bear geologic traces of both India and Asia. Geologists have sought to characterize the rocks of the Himalayas in order to retrace one of the planet's most dramatic tectonic collisions.

Now researchers at MIT have found that the collision between India and Asia occurred only 40 million years ago — 10 million years later than previously thought. The scientists analyzed the composition of rocks from two regions in the Himalayas, and discovered evidence of two separate collisional events: As India crept steadily northward, it first collided with a string of islands 50 million years ago, before plowing into the Eurasian continental plate 10 million years later.

Oliver Jagoutz, assistant professor of geology in MIT's Department of Earth, Atmospheric and Planetary Sciences, says the results, which will be published in Earth and Planetary Science Letters, change the timeline for a well-known tectonic story.

"India came running full speed at Asia and boom, they collided," says Jagoutz, an author of the paper. "But we actually don't think it was one collision … this changes dramatically the way we think India works."

'How great was Greater India?'

In particular, Jagoutz says, the group's findings may change scientists' ideas about the size of India before it collided with Asia. At the time of collision, part of the ancient Indian plate — known as "Greater India" — slid underneath the Eurasian plate.

What we see of India's surface today is much smaller than it was 50 million years ago. It's not clear how much of India lies beneath Asia, but scientists believe the answer may come partly from knowing how fast the Indian plate migrates, and exactly when the continent collided with Asia.

"The real question is, 'How great was Greater India?'" Jagoutz says. "If you know when India hit, you know the size of Greater India."

By dating the Indian-Eurasian collision to 10 million years later than previous estimates, Jagoutz and his colleagues conclude that Greater India must have been much smaller than scientists have thought.

"India moved more than 10 centimeters a year," Jagoutz says. "Ten million years [later] is 1,000 kilometers less in convergence. That is a real difference."

Leafing through the literature

To pinpoint exactly when the Indian-Eurasian collision occurred, the team first looked to a similar but more recent tectonic example. Over the last 2 million years, the Australian continental plate slowly collided with a string of islands known as the Sunda Arc. Geologists have studied the region as an example of an early-stage continental collision.

Jagoutz and his colleagues reviewed the geologic literature on Oceania's rock composition. In particular, the team looked for telltale isotopes — chemical elements that morph depending on factors like time and tectonic deformation. The researchers identified two main isotopic systems in the region's rocks: one in which the element lutetium decays to hafnium, and another in which samarium decays to neodymium. From their analysis of the literature, the researchers found that rocks high in neodymium and hafnium isotopes likely formed before Australia collided with the islands. Rocks high in neodymium and hafnium probably formed after the collision.

Heading to the Himalayas

Once the team identified the isotopic signatures for collision, it looked for similar signatures in rocks gathered from the Himalayas.

Since 2000, Jagoutz has trekked to the northwest corner of the Himalayas, a region of Pakistan and India called the Kohistan-Ladakh Arc. This block of mountains is thought to have been a string of islands that was sandwiched between the two continents as they collided. Jagoutz traversed the mountainous terrain with pack mules and sledgehammers, carving out rock samples from the region's northern and southern borders. His team has brought back three tons of rocks, which he and his colleagues analyzed for signature isotopes.

The researchers split the rocks, and separated out more than 3,000 zircons — micron-long crystals containing isotopic ratios. Jagoutz and his colleagues first determined the age of each zircon using another isotopic system, in which uranium turns slowly to lead with time. The team then measured the ratios of strontium to neodymium, and lutetium to hafnium, to determine the presence of a collision, keeping track of where each zircon was originally found (along the region's northern or southern border).

The team found a very clear signature: Rocks older than 50 million years contained exactly the same ratio of isotopes in both the northern and southern samples. However, Jagoutz found that rocks younger than 50 million years, along the southern boundary of the Kohistan-Ladakh Arc, suddenly exhibited a range of isotopic ratios, indicating a dramatic tectonic event. Along the arc's northern boundary, the same sudden change in isotopes occurs, but only in rocks younger than 40 million years.

Taken together, the evidence supports a new timeline of collisional events: Fifty million years ago, India collided with a string of islands, pushing the island arc northward. Ten million years later, India collided with the Eurasian plate, sandwiching the string of islands, now known as the Kohistan-Ladakh Arc, between the massive continents.

"If you actually go back in the literature to the 1970s and '80s, people thought this was the right way," Jagoutz says. "Then somehow the literature went in another direction, and people largely forgot this possibility. Now this opens up a lot of new ideas."

This research was supported by a grant from the National Science Foundation.

Written by Jennifer Chu, MIT News Office

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>