Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing levels of carbon dioxide in Arctic coastal seas

19.06.2012
The Arctic coastal seas absorb the greenhouse gas carbon dioxide to an ever-decreasing extent. This leads to an increase in the level in the atmosphere and an increase in the rate of warming in the Arctic. This is the conclusion from research carried out at the University of Gothenburg, Sweden.

Most scientists consider that changes to the Earth’s climate are caused by increasing amounts of greenhouse gases released by humans from, for example, the combustion of fossil fuels. Carbon dioxide plays a major role in this process.

The oceans absorb carbon dioxide

Approximately half of the emission of carbon dioxide from human combustion of fossil fuels was absorbed by the oceans up until 1994. As the amount of carbon dioxide in the oceans rises, however, their capacity to absorb the gas falls, and it remains in the atmosphere.

“The greenhouse gases raise the temperature of the Earth and this increase is particularly noticeable in the Arctic. It is even more pronounced in Siberia and its coastal seas,” says Iréne Wåhlström, researcher in marine chemistry.

The increase in temperature has an impact on the environment in the Arctic – the cover of sea ice is lower, for example, and the supply of water from rivers increases, the permafrost thaws and the rate of coastal erosion increases.

“One consequence is that organic matter that has been stored in soil is carried to the seas, where it is partially broken down to carbon dioxide,” says Iréne Wåhlström.

Climate change affects the carbon dioxide system

Iréne Wåhlström has investigated two of the coastal seas off Siberia, the Laptev Sea and the East Siberian Sea, in a ship-borne expedition, and – in the case of the Laptev Sea – by mathematical modelling.

The East Siberian Sea has a western part and an eastern part, into which water flows from the Pacific Ocean.

“The level of marine photosynthesis is high in these waters during the summer, and carbon dioxide is consumed. This leads to the level in the sea being lower than in the air, and the sea absorbs carbon dioxide from the air,” says Iréne Wåhlström.

The western East Siberian Sea receives also a major contribution from rivers, both directly from the land and from the neighbouring Laptev Sea.

“The river water contains high levels of organic matter, which is partially broken down to carbon dioxide in the sea. This leads to the level in the sea being higher than in the air, and thus carbon dioxide flows from the sea into the air, accelerating climate change.”

The Laptev Sea had an excess of carbon dioxide during the late summer of 2008 that was of the same order of magnitude as the western East Siberian Sea, probably caused by the breakdown of organic matter from the land.

The results suggest that the Laptev Sea has changed from being a sink for atmospheric carbon dioxide to become a source of carbon dioxide during the late summer. This will probably be reinforced by a higher air temperature, particularly if parts of the large reservoir of stored organic matter in the Arctic tundra thaw and are carried to the sea. This will further increase the rate of temperature rise of the Earth.

The thesis has been successfully defended.

Bibliographic data
Authors: Wåhlström, I., Omstedt, A., Björk, G., Anderson, L.G.,
Title: Modelling the CO2 dynamics in the Laptev Sea
Journal: Arctic Ocean: Part I , J. Mar. Syst., accepted 2012.

For more information, please contact: Iréne Wåhlström, Department of Chemistry and Molecular Biology, University of Gothenburg
Telephone: +46 31 786 9053
E-mail: irene.wohlstrom@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/28865

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>