Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing Antarctic sea ice extent linked to the ozone hole

23.04.2009
Increased growth in Antarctic sea ice during the past 30 years is a result of changing weather patterns caused by the ozone hole according to new research published this week (Thurs 23 April 2009).

Reporting in the journal Geophysical Research Letters scientists from British Antarctic Survey (BAS) and NASA say that while there has been a dramatic loss of Arctic sea ice, Antarctic sea ice has increased by a small amount as a result of the ozone hole delaying the impact of greenhouse gas increases on the climate of the continent.

Sea ice plays a key role in the global environment – reflecting heat from the sun and providing a habitat for marine life. At both poles sea ice cover is at its minimum during summer. However, during the winter freeze in Antarctica this ice cover expands to an area roughly twice the size of Europe. Ranging in thickness from less than a metre to several metres, the ice insulates the warm ocean from the frigid atmosphere above. Satellite images show that since the 1970s the extent of Antarctic sea ice has increased at a rate of 100,000 square kilometres a decade.

The new research helps explain why observed changes in the amount of sea-ice cover are so different in both polar regions.

Lead author Professor John Turner of BAS says,

“Our results show the complexity of climate change across the Earth. While there is increasing evidence that the loss of sea ice in the Arctic has occurred due to human activity, in the Antarctic human influence through the ozone hole has had the reverse effect and resulted in more ice. Although the ozone hole is in many ways holding back the effects of greenhouse gas increases on the Antarctic, this will not last, as we expect ozone levels to recover by the end of the 21st Century. By then there is likely to be around one third less Antarctic sea ice.”

Using satellite images of sea ice and computer models the scientists discovered that the ozone hole has strengthened surface winds around Antarctica and deepened the storms in the South Pacific area of the Southern Ocean that surrounds the continent. This resulted in greater flow of cold air over the Ross Sea (West Antarctica) leading to more ice production in this region.

The satellite data reveal the variation in sea ice cover around the entire Antarctic continent. Whilst there has been a small increase of sea ice during the autumn around the coast of East Antarctica, the largest changes are observed in West Antarctica. Sea ice has been lost to the west of the Antarctic Peninsula – a region that has warmed by almost 3ºC in the past 50 years. Further west sea ice cover over the Ross Sea has increased.

Turner continues,
“Understanding how polar sea ice responds to global change – whether human induced or as part of a natural process – is really important if we are to make accurate predictions about the Earth’s future climate. This new research helps us solve some of the puzzle of why sea-ice is shrinking is some areas and growing in others.”
ENDS
Issued by British Antarctic Survey Press Office.
Linda Capper, tel: +44 (0)1223 221448; mob: 07714 233744; email: LMCA@bas.ac.uk
Audrey Stevens, tel: +44 (0)1223 221230; mob: 077989 22674; email: AUEV@bas.ac.uk
Science contacts: Professor John Turner, Tel: +44 (0)1223 221485; email: jtu@bas.ac.uk
Ted Maksym; Tel +44 (0)1223 221661; email: emak@bas.ac.uk;
Pictures: stills and video of Antarctic sea ice, scenery and ozone research are available from the press office.
Notes to Editors:
The paper ‘Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent’ by J Turner, JC Comiso, G J Marshall, T A Lachlan-Cope, T Bracegirdle, T Maksym, MP Meredith, Z Wang, and A Orr (2009), is published in

Geophysical Research Letters doi:10.1029/2009GL037524, [23 April 2009].

Floating sea ice caps the ocean around the Antarctic and although it is mostly only 1-2 m thick, it provides effective insulation between the frigid Antarctic atmosphere and the relatively warm ocean below. The ice extent has a minimum in autumn, but by the end of the winter covers an area of 19 million square kilometres, essentially doubling the size of the continent. Instruments flown on polar orbiting satellites have been able to map the distribution and concentration of sea ice since the late 1970s and this study used a new data set of Antarctic sea ice extent created by NASA.

The ozone hole was discovered by BAS scientists in the mid-1980s and found to be a result of CFCs in the stratosphere that destroyed the ozone above the continent each spring. The loss of the ozone resulted in marked cooling in the Antarctic stratosphere, which increased the winds around the continent at that level. The effects of the ozone hole propagate down through the atmosphere during the summer and autumn so that the greatest increase in surface winds over the Southern Ocean has been during the autumn. CFCs have a long lifetime in the atmosphere and despite the Montreal Protocol, which has banned the use of CFCs, there is currently no indication of a recovery of springtime ozone concentrations. However, over approximately the next half century there is expected to be a return to the pre-ozone hole concentrations of ozone.

Strong winds are a major feature of the Southern Ocean with the remoteness of the Antarctic from other landmasses allowing active depressions to ring the continent. The Antarctic continent is slightly off-pole, which results in a large number of storms over the Amundsen Sea (the Amundsen Sea Low) giving average northerly winds down the Antarctic Peninsula and cold, southerly winds off the Ross Ice Shelf. The stronger winds around the continent in Autumn as a result of the ozone hole have deepened the Amundsen Sea Low, giving the positive and negative trends in sea ice over the Ross Sea and to the west of the Antarctic Peninsula respectively. Although there has been a loss of some sea ice to the west of the Antarctic Peninsula, this is negated by the larger increase of ice in the Ross Sea, giving a net increase in the amount of ice around the Antarctic.

There has been contrasting climate change across the Antarctic in recent decades. The Antarctic Peninsula has warmed as much as anywhere in the Southern Hemisphere, with loss of ice shelves and changes in the terrestrial and marine biota. The warming during the summer, which has the greatest impact on the stability of the ice shelves, has been linked to the ozone hole and increasing greenhouse gases. Recent research has suggested that the warming extends into West Antarctica. In contrast, East Antarctic has shown little change or even a small cooling around the coast, which is consistent with the small increase in sea ice extent off the coast. The increase in storm activity over the South Pacific sector is also consistent with the pattern of temperature change observed, with warming down the Antarctic Peninsula in the stronger northerly flow.

The Cambridge-based British Antarctic Survey (BAS) is a world leader in research into global environmental issues. With an annual budget of around £40 million, five Antarctic Research Stations, two Royal Research Ships and five aircraft BAS undertakes an interdisciplinary research programme and plays an active and influential role in Antarctic affairs. BAS has joint research projects with over 40 UK universities and has more than 120 national and international collaborations. It is a component of the Natural Environment Research Council.

Linda Capper | EurekAlert!
Further information:
http://www.antarctica.ac.uk
http://www.bas.ac.uk

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>