Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased greenhouse gases and aerosols have similar effects on rainfall

02.09.2013
Although greenhouse gases and aerosols have very distinct properties, their effects on spatial patterns of rainfall change are surprisingly similar, according to new research from the University of Hawaii at Manoa's International Pacific Research Center (IPRC) and Scripps Institution of Oceanography. The study is published in the September 1 online issue of Nature Geoscience.

Manmade climate change comes mostly from the radiative forcing of greenhouse gases and air pollutants or aerosols. While greenhouse gases are well-mixed in the atmosphere and tend to be evenly distributed around the globe, aerosols vary greatly in local concentration and tend to be found near emission sources such as industrial centers in Asia and North America.

Aerosols affect climate in two ways: one is fast and perturbs the physics and behavior of clouds in minutes to days; the other effect takes years and is mediated by interactions with the ocean and atmosphere. The fast effects of aerosols on clouds have been studied intensely, but their long-term ocean-mediated effect has received little attention.

A team of scientists at the IPRC and Scripps has now provided important new insights based on results from experiments with three state-of-the-art climate models. Even though aerosols and greenhouse gases are concentrated in vastly different regions of the earth, all three models revealed similar regional effects on rainfall over the ocean.

"This came as a big surprise to us," reflected lead-author Shang-Ping Xie, a professor of climate science and first Roger Revelle Chair in Environmental Science at Scripps. "It took a while for the result to sink in. The result means that it is hard to tell apart the greenhouse and aerosol effects."

The scientists noted that both aerosol-induced and greenhouse-gas-induced changes in rainfall appear to be mediated by the spatial patterns of sea surface temperature.

"Although much of the aerosol research has focused on microphysical processes, over the ocean the climate response to aerosols appears to be insensitive to details of the micro-processes in clouds," Xie said. "The climate changes induced by greenhouse gases and by aerosols share a common set of ocean-atmospheric feedback structures, explaining the spatial resemblance between the two types of response."

"Innovative model experiments are now needed," says coauthor Baoqiang Xiang, postdoctoral fellow at the IPRC. We want to probe the ocean-atmosphere interaction mechanisms that mediate these rainfall patterns and to determine what forms the foundation. This will allow us to develop more reliable regional climate projections."

Citation: Xie, S.-P., B. Lu, and B. Xiang: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nature Geoscience, doi: 10.1038/ngeo1931. Advance Online Publication: September 1, 2013.

This work was supported by the NSF (ATM-0854365), the National Basic Research Program of China (2012CB955600), the NOAA Climate Program Office (NA08OA4320910), the China Scholarship Council and the Japan Agency for Marine-Earth Science and Technology.

Author Contact:

Shang-Ping Xie, currently at: sxie@ucsd.edu, (858) 822-0053, Scripps Institution of Oceanography.

Bo Lu, currently at: lblblbdfs@pku.edu.cn, National Climate Center, China Meteorological Administration, Beijing, China

Baoqiang Xiang, currently at: Baoqiang@hawaii.edu, (808) 956-2453, International Pacific Research Center, University of Hawaii at Manoa.

International Pacific Research Center Media Contact:

Gisela E. Speidel, gspeidel@hawaii.edu. (808) 956-9252.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>