Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Increased greenhouse gases and aerosols have similar effects on rainfall

Although greenhouse gases and aerosols have very distinct properties, their effects on spatial patterns of rainfall change are surprisingly similar, according to new research from the University of Hawaii at Manoa's International Pacific Research Center (IPRC) and Scripps Institution of Oceanography. The study is published in the September 1 online issue of Nature Geoscience.

Manmade climate change comes mostly from the radiative forcing of greenhouse gases and air pollutants or aerosols. While greenhouse gases are well-mixed in the atmosphere and tend to be evenly distributed around the globe, aerosols vary greatly in local concentration and tend to be found near emission sources such as industrial centers in Asia and North America.

Aerosols affect climate in two ways: one is fast and perturbs the physics and behavior of clouds in minutes to days; the other effect takes years and is mediated by interactions with the ocean and atmosphere. The fast effects of aerosols on clouds have been studied intensely, but their long-term ocean-mediated effect has received little attention.

A team of scientists at the IPRC and Scripps has now provided important new insights based on results from experiments with three state-of-the-art climate models. Even though aerosols and greenhouse gases are concentrated in vastly different regions of the earth, all three models revealed similar regional effects on rainfall over the ocean.

"This came as a big surprise to us," reflected lead-author Shang-Ping Xie, a professor of climate science and first Roger Revelle Chair in Environmental Science at Scripps. "It took a while for the result to sink in. The result means that it is hard to tell apart the greenhouse and aerosol effects."

The scientists noted that both aerosol-induced and greenhouse-gas-induced changes in rainfall appear to be mediated by the spatial patterns of sea surface temperature.

"Although much of the aerosol research has focused on microphysical processes, over the ocean the climate response to aerosols appears to be insensitive to details of the micro-processes in clouds," Xie said. "The climate changes induced by greenhouse gases and by aerosols share a common set of ocean-atmospheric feedback structures, explaining the spatial resemblance between the two types of response."

"Innovative model experiments are now needed," says coauthor Baoqiang Xiang, postdoctoral fellow at the IPRC. We want to probe the ocean-atmosphere interaction mechanisms that mediate these rainfall patterns and to determine what forms the foundation. This will allow us to develop more reliable regional climate projections."

Citation: Xie, S.-P., B. Lu, and B. Xiang: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nature Geoscience, doi: 10.1038/ngeo1931. Advance Online Publication: September 1, 2013.

This work was supported by the NSF (ATM-0854365), the National Basic Research Program of China (2012CB955600), the NOAA Climate Program Office (NA08OA4320910), the China Scholarship Council and the Japan Agency for Marine-Earth Science and Technology.

Author Contact:

Shang-Ping Xie, currently at:, (858) 822-0053, Scripps Institution of Oceanography.

Bo Lu, currently at:, National Climate Center, China Meteorological Administration, Beijing, China

Baoqiang Xiang, currently at:, (808) 956-2453, International Pacific Research Center, University of Hawaii at Manoa.

International Pacific Research Center Media Contact:

Gisela E. Speidel, (808) 956-9252.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>