Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inaugural deployment of buoys to measure air and sea interactions in typhoons launched from Taiwan

11.08.2010
An international team of scientists and technicians from the University of Miami (UM) Rosenstiel School, the University of Leeds in the United Kingdom, Woods Hole Oceanographic Institution, and Environment Canada are participating in a groundbreaking buoy deployment that will help them to better understand interactions between the ocean and atmosphere during typhoons. The research is funded by the U.S. Office of Naval Research.

The R/V Revelle, a Scripps research vessel departed from the port of Kao-hsiung, Taiwan with two tandem buoy sets onboard: the boat-shaped EASI (Extreme Air-Sea Interaction) buoy and the ASIS (Air-Sea Interaction Spar) buoy. This is the first time these buoys will be used in the typhoon-prone Western Pacific. In the past, these buoy deployments have taken place in the Atlantic Ocean during hurricane season, and on separate experiments in the Southern Ocean and Labrador Sea.

The researchers are deploying the two sets of buoys in tandem, about � miles southeast of Taiwan to thoroughly test them in typhoon force conditions. The buoys will be out at sea for 3 months collecting valuable data that scientists will use to understand the exchange dynamics and fluxes occurring between the atmosphere and ocean during the intense typhoon conditions.

"We have successfully used these buoys to measure air-sea interactions and wave dynamics in the Atlantic in a variety of storm conditions and are now looking forward to applying this technology to the western Pacific where super typhoons develop quite frequently," said the PI of this project, Dr. Hans Graber, professor and executive director of UM's Center for Southeastern Tropical Advanced Remote Sensing. "In the last several years we have added new technologies and improved the data collection capabilities of these buoys as well as made the buoys more robust to withstand extreme weather conditions. In addition we will also be using satellite telecommunications to query the buoys routinely from Miami and retrieve data. "

The buoys will measure the momentum, heat, and moisture exchange between the air atmosphere and ocean at the midst of tropical cyclones. This information will help improve weather forecast models that predict typhoon intensity. It will also give the research community a better idea of the distribution of wind and how force is distributed. There will be sonic anemometers (acoustic devices that measure wind speed and stress at high resolution) and a suite of other sensors that measure air temperature, humidity, and water temperature. The buoys will also have ADCPs (acoustic Doppler current profilers) to measure currents as a function of depth, as well as temperature probes in the upper ocean and acoustic devices to measure turbulence near the surface. A strong set of piano-like wires arranged in a pentagon will measure small scale details of the ocean surface (roughness) and the directional properties of waves.

"The buoys feature a Compact Lightweight Aerosol Spectrometer (CLASP) device that measures the near-surface marine aerosol production mechanisms, or sea spray from wave-breaking events that result from typhoon force winds," said Dr. Will Drennan, UM professor and associate dean of undergraduate studies for the Rosenstiel School. "These measurements could be especially important as the spray layer has a significant impact on the drag coefficient, a key parameter used in creating weather forecast models."

The team includes several people from UM, including applied marine physics professors Hans Graber and Will Drennan, associate scientist Neil Williams, marine technician Mike Rebozo, post-doctoral researchers Rafael Ramos and Michelle Gierach, graduate students Björn Lund, Henry Potter, Tripp Collins and Sharein El-Tourky, and undergraduate Marine Science student Anibal Herrera. They are joined by Joe Gabriele and Cary Smith of Environment Canada, John Kemp, Jim Dunn and Jim Ryder of Woods Hole Oceanographic Institution and Dr. Ian Brooks of the University of Leeds, UK.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>