Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the Southern Ocean, a carbon-dioxide mystery comes clear

04.02.2016

Sediments show greenhouse gas taken from air

Twenty thousand years ago, when humans were still nomadic hunters and gatherers, low concentrations of carbon dioxide in the atmosphere allowed the earth to fall into the grip of an ice age. But despite decades of research, the reasons why levels of the greenhouse gas were so low then have been difficult to piece together.


Researchers have found that bottom waters of the Southern Ocean had very low levels of oxygen during the last ice age, indicating high uptake of carbon. Here, dissolved Southern Ocean bottom-water oxygen in modern times. Brighter colors indicate more oxygen; dots show sites where researchers sampled sediments to measure past oxygen levels.

Credit: Jaccard et al., Nature 2016

New research, published today in the leading journal Nature, shows that a big part of the answer lies at the bottom of the world. Sediment samples from the seafloor, more than 3 kilometers beneath the ocean surface near Antarctica, support a long-standing hypothesis that more carbon dioxide was dissolved in the deep Southern Ocean at times when levels in the atmosphere were low.

Among other things, the study shows that during the ice age, the deep Southern Ocean carried much smaller amounts of oxygen than today. This indicates that photosynthetic algae, or phytoplankton, were taking up large amounts of carbon dioxide near the surface. As dead algae sank to the depths, they were consumed by other microbes, which used up the oxygen there in the process. The scientists found chemical fingerprints of the oxygen level by measuring trace metals in the sediments.

The evidence "is a long-sought smoking gun that there was increased deep ocean carbon storage when the atmospheric CO2 was lower," said Sam Jaccard of the University of Bern, Switzerland, the study's lead author.

Coauthor Robert Anderson, a geochemist at Columbia University's Lamont-Doherty Earth Observatory, said the study "finally provides the long-sought direct evidence that extra carbon was trapped in the deep sea by the buildup of decaying organic matter from above." He added, "It's also clear that the buildup and release of CO2 stored in the deep ocean during the ice age was driven by what was happening in the ocean around Antarctica."

The study also shows that variations in carbon-dioxide storage in the Southern Ocean were probably behind a series of natural "wobbles" in atmospheric levels of about 20 parts per million that took place over thousands of years. The study suggests that the wobbles were probably caused by changes in the amount of iron-rich dust, which fertilizes phytoplankton, being blown from land onto the ocean surface. Levels may also have been influenced by varying amounts of carbon being released from the deep ocean as ocean currents changed, said the authors.

The study may hold powerful lessons for today. While the natural 20-part-per million wobbles took thousands of years to happen, carbon dioxide levels have risen that much in just the last nine years, due to human emissions. Levels are now about 400 parts per million, versus about 280 in the early 1800s. "The current rate of emissions is just so fast compared to the natural variations that it's hard to compare," said study coauthor Eric Galbraith of the Autonomous University of Barcelona. "We are entering climate territory for which we don't have a good geological analog."

###

The study was also coauthored by Alfredo Martinez-Garcia of Germany's Max Planck Institute for Chemistry.

Related: With Climate, Fertilizing Oceans May Be a Zero-Sum Game

To contact the researchers:
Sam Jaccard: samuel.jaccard@geo.unibe.ch
Robert Anderson: boba@ldeo.columbia.edu
Eric Galbraith: eric.galbraith@icrea.cat
Alfredo Martinez-Garcia: a.martinez-garcia@mpic.de

Kevin Krajick | EurekAlert!

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>