Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the Southern Ocean, a carbon-dioxide mystery comes clear

04.02.2016

Sediments show greenhouse gas taken from air

Twenty thousand years ago, when humans were still nomadic hunters and gatherers, low concentrations of carbon dioxide in the atmosphere allowed the earth to fall into the grip of an ice age. But despite decades of research, the reasons why levels of the greenhouse gas were so low then have been difficult to piece together.


Researchers have found that bottom waters of the Southern Ocean had very low levels of oxygen during the last ice age, indicating high uptake of carbon. Here, dissolved Southern Ocean bottom-water oxygen in modern times. Brighter colors indicate more oxygen; dots show sites where researchers sampled sediments to measure past oxygen levels.

Credit: Jaccard et al., Nature 2016

New research, published today in the leading journal Nature, shows that a big part of the answer lies at the bottom of the world. Sediment samples from the seafloor, more than 3 kilometers beneath the ocean surface near Antarctica, support a long-standing hypothesis that more carbon dioxide was dissolved in the deep Southern Ocean at times when levels in the atmosphere were low.

Among other things, the study shows that during the ice age, the deep Southern Ocean carried much smaller amounts of oxygen than today. This indicates that photosynthetic algae, or phytoplankton, were taking up large amounts of carbon dioxide near the surface. As dead algae sank to the depths, they were consumed by other microbes, which used up the oxygen there in the process. The scientists found chemical fingerprints of the oxygen level by measuring trace metals in the sediments.

The evidence "is a long-sought smoking gun that there was increased deep ocean carbon storage when the atmospheric CO2 was lower," said Sam Jaccard of the University of Bern, Switzerland, the study's lead author.

Coauthor Robert Anderson, a geochemist at Columbia University's Lamont-Doherty Earth Observatory, said the study "finally provides the long-sought direct evidence that extra carbon was trapped in the deep sea by the buildup of decaying organic matter from above." He added, "It's also clear that the buildup and release of CO2 stored in the deep ocean during the ice age was driven by what was happening in the ocean around Antarctica."

The study also shows that variations in carbon-dioxide storage in the Southern Ocean were probably behind a series of natural "wobbles" in atmospheric levels of about 20 parts per million that took place over thousands of years. The study suggests that the wobbles were probably caused by changes in the amount of iron-rich dust, which fertilizes phytoplankton, being blown from land onto the ocean surface. Levels may also have been influenced by varying amounts of carbon being released from the deep ocean as ocean currents changed, said the authors.

The study may hold powerful lessons for today. While the natural 20-part-per million wobbles took thousands of years to happen, carbon dioxide levels have risen that much in just the last nine years, due to human emissions. Levels are now about 400 parts per million, versus about 280 in the early 1800s. "The current rate of emissions is just so fast compared to the natural variations that it's hard to compare," said study coauthor Eric Galbraith of the Autonomous University of Barcelona. "We are entering climate territory for which we don't have a good geological analog."

###

The study was also coauthored by Alfredo Martinez-Garcia of Germany's Max Planck Institute for Chemistry.

Related: With Climate, Fertilizing Oceans May Be a Zero-Sum Game

To contact the researchers:
Sam Jaccard: samuel.jaccard@geo.unibe.ch
Robert Anderson: boba@ldeo.columbia.edu
Eric Galbraith: eric.galbraith@icrea.cat
Alfredo Martinez-Garcia: a.martinez-garcia@mpic.de

Kevin Krajick | EurekAlert!

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>