Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved representation of solar variability in climate models

04.07.2017

New reference data set for model intercomparison studies published

How much do solar cycle variations influence our climate system? Could the rising Earth temperatures due to anthropogenic effects partly be compensated by a reduction of solar forcing in the future? These questions have been in the focus of climate research for a long time. In order to answer these questions as precisely as possible, it is required to know the fluctuations of solar forcing on the timescale of the 11-year sunspot cycle as precisely as possible in order to use these as input parameters for climate model simulations. An international research team led by the GEOMAR Helmholtz Centre for Ocean Research Kiel and the Instituto de Astrofísica de Andalucía (CSIC) in Granada (Spain) have now published a new dataset, which will be used as a basis for all upcoming model intercomparison studies and in particular the next climate assessment report of the Intergovernmental Panel on Climate Change (IPCC).


The yellow shows old reconstruction, the black shows new reconstruction and the grey shaded shows observations.

Credit: GEOMAR

"For solar irradiance, we have essentially combined two data sets, one from our American colleagues and one from the Max Planck Institute for Solar System Research in Göttingen", explains the first author Prof. Dr. Katja Matthes from GEOMAR. "In this new data set, the variability in the shortwave part of the solar spectrum, the so-called UV range, is stronger than before. This leads to a warming of the stratosphere and increased ozone production at the maximum of the Sun's activity", Matthes continues.

The scientists expect that this new solar forcing will lead to more pronounced signals in the stratosphere at heights between 15 and 50 kilometres which might influence surface climate through complicated interaction mechanisms. Further innovations of the data set are a new reference value for the so-called "solar constant", the total solar irradiance, i.e. the irradiance averaged over all wavelengths. The new estimate is with 1361 watts per square meter lower than before. In addition the effects of energetic particles are considered.

... more about:
»CSIC »Climate »GEOMAR »Ocean Research »climate models

The new data set will be used in the coming years as a reference for the sixth cycle of an internationally coordinated intercomparison project of coupled ocean-atmosphere models. The so-called CMIP (Coupled Model Intercomparison Project) experiments are already performed since several decades. They are an important quality check for climate models and are the basis for IPCC's climate assessment reports.

What do scientists expect from the new data set? "In our future scenario for CMIP6, we provide a more sophisticated estimate of the future development of solar activity after 2015", explains Dr. Bernd Funke, from CSIC, co-author of the study. "By 2070 a decrease of the Sun's mean activity to a smaller solar minimum is expected. This counteracts the anthropogenic global warming signal, but will not have a significant influence on the development of global average surface temperatures", Dr. Funke continues. However, regional effects should not negligible. In addition, for the first time a quantification of solar irradiance and particle effects will be possible.

The new data set is the outcome of a large, interdisciplinary team effort, from solar physicists and energetic particle experts to climate modellers. This work has been carried out as part of an international project of the World Climate Research Programme. Under the leadership of Katja Matthes and Bernd Funke, the worldwide expertise on this topic was combined to create the best possible assessment of past, present and future solar variability.

"The new data set will help to further improve our understanding of natural decadal climate variability and to distinguish natural more clearly from anthropogenic processes", Prof. Matthes concludes.

Andreas Villwock | EurekAlert!

Further reports about: CSIC Climate GEOMAR Ocean Research climate models

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>