Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illuminating the double face of anthropogenic nitrogen

01.08.2011
Recent studies have shown that human nitrogen additions to terrestrial ecosystems increase the terrestrial carbon dioxide uptake from the atmosphere.

A new study published online this week in Nature Geoscience reports now that the climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, a further side-effect of human nitrogen additions to terrestrial ecosystems.

Human activities have more than doubled nitrogen inputs to the terrestrial biosphere since the 1860s. The two main causes for this are increased atmospheric nitrogen deposition from, for instance, fossil fuel burning, and the application of fertilizers in agriculture.

Nitrogen is an essential nutrient for plant and microbial growth, and one of the key limiting nutrients in many natural ecosystems. The anthropogenic perturbations of the nitrogen cycle are known to affect the terrestrial sources and sinks of greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O). These changes are potentially very important as they may significantly affect the climate system, but their magnitude is still unknown.

“When added to nitrogen-limited ecosystems, it [nitrogen] can stimulate plant growth and/or suppress soil respiration, thereby leading to increased ecosystem carbon storage” explains Sönke Zaehle. However, there are also potentially negative consequences for adding nitrogen to ecosystems, as increasing nitrogen availability may enhance nitrogen losses from ecosystems, and eventually even have damaging effects on plant health. Particularly relevant for climate are elevated emissions of ni-trous oxide, a long-lived greenhouse gas that is emitted from fertilised fields, as well as nitrogen-rich forest and grassland ecosystems.

Drawing on reconstructions of past and present anthropogenic nitrogen deposition and fertiliser applications, Sönke Zaehle and colleagues used a global computer model of the coupled terrestrial carbon and nitrogen cycles to better understand the consequences of this anthropogenic nitrogen perturbation for the climate system. Their results confirm that the anthropogenic nitrogen perturbation has profoundly affected terrestrial carbon dioxide and nitrous oxide fluxes. Human nitrogen additions are the principle cause for the increase in terrestrial nitrous oxide emission since 1960, and contribute to about one fifth of the current global net carbon uptake (1996-2005).

Sönke Zaehle and colleagues then determined the effect of anthropogenic nitrogen on the at-mospheric concentrations of the greenhouse gases CO2 and N2O, and assessed the resulting consequences for present-day climate. The key finding is that the climatic effects of the anthropogenic nitrogen perturbation from both gases are very substantial but of opposite signs. The cooling effect due to enhanced carbon uptake of the terrestrial biosphere is more than compensated for by the warming effects from enhanced terrestrial N2O emissions.

However, “the fact that in our study the N2O effect appears stronger than the CO2 effect should not be over-interpreted” cautions Zaehle. Rather, the study highlights the relevance of anthropogenic nitrogen in the climate system and the need to consider the effects of carbon and nitrogen cycling jointly. “I hope that this study fosters further research to better understand the effects of human N on ecosystem dynamics through joint observational and modelling studies”, Zaehle adds.
Original data are published in:
S. Zaehle, P. Ciais, A. D. Friend, V. Prieur (2011): Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nature Geoscience, Vol 4, August 2011, doi 10.1038/NGEO1207
Contact:
Sönke Zaehle
Max Planck Institute for Biogeochemistry, Jena, Germany
Phone: +49 3641 57 63 25
Fax: +49 3641 57 73 00
Email: soenke.zaehle@bgc-jena.mpg.de
Philippe Ciais
Laboratoire des Sciences du Climat et de L’Environnement, Gif/Yvette, France
Email : philippe.ciais@cea.fr
Andrew D. Friend
University of Cambridge, Cambridge, UK
Email: Andrew.Friend@geog.cam.ac.uk
Vincent Prieur
Laboratoire des Sciences du Climat et de l’Environnement, Gif/Yvette, France
Email : vprieur@lsce.ipsl.fr

Susanne Hermsmeier | Max-Planck-Institut
Further information:
http://www.bgc-jena.mpg.de/

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>