Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illuminating the double face of anthropogenic nitrogen

01.08.2011
Recent studies have shown that human nitrogen additions to terrestrial ecosystems increase the terrestrial carbon dioxide uptake from the atmosphere.

A new study published online this week in Nature Geoscience reports now that the climatic benefits from carbon sequestration are largely offset by increased nitrous oxide emissions, a further side-effect of human nitrogen additions to terrestrial ecosystems.

Human activities have more than doubled nitrogen inputs to the terrestrial biosphere since the 1860s. The two main causes for this are increased atmospheric nitrogen deposition from, for instance, fossil fuel burning, and the application of fertilizers in agriculture.

Nitrogen is an essential nutrient for plant and microbial growth, and one of the key limiting nutrients in many natural ecosystems. The anthropogenic perturbations of the nitrogen cycle are known to affect the terrestrial sources and sinks of greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O). These changes are potentially very important as they may significantly affect the climate system, but their magnitude is still unknown.

“When added to nitrogen-limited ecosystems, it [nitrogen] can stimulate plant growth and/or suppress soil respiration, thereby leading to increased ecosystem carbon storage” explains Sönke Zaehle. However, there are also potentially negative consequences for adding nitrogen to ecosystems, as increasing nitrogen availability may enhance nitrogen losses from ecosystems, and eventually even have damaging effects on plant health. Particularly relevant for climate are elevated emissions of ni-trous oxide, a long-lived greenhouse gas that is emitted from fertilised fields, as well as nitrogen-rich forest and grassland ecosystems.

Drawing on reconstructions of past and present anthropogenic nitrogen deposition and fertiliser applications, Sönke Zaehle and colleagues used a global computer model of the coupled terrestrial carbon and nitrogen cycles to better understand the consequences of this anthropogenic nitrogen perturbation for the climate system. Their results confirm that the anthropogenic nitrogen perturbation has profoundly affected terrestrial carbon dioxide and nitrous oxide fluxes. Human nitrogen additions are the principle cause for the increase in terrestrial nitrous oxide emission since 1960, and contribute to about one fifth of the current global net carbon uptake (1996-2005).

Sönke Zaehle and colleagues then determined the effect of anthropogenic nitrogen on the at-mospheric concentrations of the greenhouse gases CO2 and N2O, and assessed the resulting consequences for present-day climate. The key finding is that the climatic effects of the anthropogenic nitrogen perturbation from both gases are very substantial but of opposite signs. The cooling effect due to enhanced carbon uptake of the terrestrial biosphere is more than compensated for by the warming effects from enhanced terrestrial N2O emissions.

However, “the fact that in our study the N2O effect appears stronger than the CO2 effect should not be over-interpreted” cautions Zaehle. Rather, the study highlights the relevance of anthropogenic nitrogen in the climate system and the need to consider the effects of carbon and nitrogen cycling jointly. “I hope that this study fosters further research to better understand the effects of human N on ecosystem dynamics through joint observational and modelling studies”, Zaehle adds.
Original data are published in:
S. Zaehle, P. Ciais, A. D. Friend, V. Prieur (2011): Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions, Nature Geoscience, Vol 4, August 2011, doi 10.1038/NGEO1207
Contact:
Sönke Zaehle
Max Planck Institute for Biogeochemistry, Jena, Germany
Phone: +49 3641 57 63 25
Fax: +49 3641 57 73 00
Email: soenke.zaehle@bgc-jena.mpg.de
Philippe Ciais
Laboratoire des Sciences du Climat et de L’Environnement, Gif/Yvette, France
Email : philippe.ciais@cea.fr
Andrew D. Friend
University of Cambridge, Cambridge, UK
Email: Andrew.Friend@geog.cam.ac.uk
Vincent Prieur
Laboratoire des Sciences du Climat et de l’Environnement, Gif/Yvette, France
Email : vprieur@lsce.ipsl.fr

Susanne Hermsmeier | Max-Planck-Institut
Further information:
http://www.bgc-jena.mpg.de/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>