Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois researchers discover hot hydrogen atoms in Earth's upper atmosphere

07.12.2016

A team of University of Illinois researchers has discovered the existence of hot atomic hydrogen (H) atoms in an upper layer of Earth's atmosphere known as the thermosphere. This finding, which the authors report in Nature Communications, significantly changes current understanding of the H distribution and its interaction with other atmospheric constituents.

Because H atoms are very light, they can easily overcome a planet's gravitational force and permanently escape into interplanetary space. The ongoing atmospheric escape of H atoms is one reason why Earth's sister planet, Mars, has lost the majority of its water.


A schematic diagram of the Global Ultraviolet Imager observational geometry. The TIMED satellite is orbiting at 625 km and viewing in the anti-sunward limb direction.

Credit: Jianqi Qin, University of Illinois

In addition, H atoms play a critical role in the physics governing the Earth's upper atmosphere and also serve as an important shield for societies' technological assets, such as the numerous satellites in low earth orbit, against the harsh space environment.

"Hot H atoms had been theorized to exist at very high altitudes, above several thousand kilometers, but our discovery that they exist as low as 250 kilometers was truly surprising," said Lara Waldrop, an assistant professor of electrical and computer engineering and principle investigator of the project.

"This result suggests that current atmospheric models are missing some key physics that impacts many different studies, ranging from atmospheric escape to the thermal structure of the upper atmosphere."

The discovery was enabled by the development of new numerical techniques and their application to years' worth of remote sensing measurements acquired by NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite.

"Classical assumptions about upper atmospheric physics didn't allow for the presence of hot H atoms at these heights," recalled Jianqi Qin, the research scientist who developed the data analysis technique. "Once we changed our approach to avoid this unphysical assumption, we were able to correctly interpret the data for the first time."

Atomic hydrogen efficiently scatters ultraviolet radiation emitted by the sun, and the amount of scattered light sensitively depends on the amount of H atoms that are present in the atmosphere. As a result, remote observations of the scattered H emission, such as those made by NASA's TIMED satellite, can be used to probe the abundance and spatial distribution of this key atmospheric constituent.

In order to extract information about the upper atmosphere from such measurements, one needs to calculate exactly how the solar photons are scattered, which falls into Qin's unique expertise.

Under support from the National Science Foundation and NASA, the researchers developed a model of the radiative transfer of the scattered emission along with a new analysis technique that incorporated a transition region between the lower and upper extents of the H distribution.

"It turns out that the new model fits the measurements perfectly," said Qin. "Our analysis of the TIMED data led to the counter-intuitive finding that the temperature of the H atoms in the thermosphere increases significantly with declining solar activity, in contrast to the ambient atmospheric temperature, which decreases with declining solar activity."

Their results also show that the presence of such hot H atoms in the thermosphere significantly affects the distribution of the H atoms throughout the entire atmosphere. The origin of such hot H atoms, previously thought not to be able to exist in the thermosphere, is still a mystery.

"We know that there must be a source of hot H atoms, either in the local thermosphere or in more distant layers of the atmosphere, but we do not have a solid answer yet," said Waldrop.

Qin added, "We will definitely keep working on this puzzle, because knowledge about the H density distribution is critical to the investigation of our atmospheric system as well as its response to space weather, which affects many space-based technologies that are so important for our modern society."

Lara Waldrop | EurekAlert!

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>