Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Sheets Can Retreat "In a Geologic Instant," Study of Prehistoric Glacier Shows

23.06.2009
Findings are relevant to modern Greenland ice sheet, says UB researcher

Modern glaciers, such as those making up the Greenland and Antarctic ice sheets, are capable of undergoing periods of rapid shrinkage or retreat, according to new findings by paleoclimatologists at the University at Buffalo.

The paper, published on June 21 in Nature Geoscience, describes fieldwork demonstrating that a prehistoric glacier in the Canadian Arctic rapidly retreated in just a few hundred years.

The proof of such rapid retreat of ice sheets provides one of the few explicit confirmations that this phenomenon occurs.

Should the same conditions recur today, which the UB scientists say is very possible, they would result in sharply rising global sea levels, which would threaten coastal populations.

"A lot of glaciers in Antarctica and Greenland are characteristic of the one we studied in the Canadian Arctic," said Jason Briner, Ph.D., assistant professor of geology in the UB College of Arts and Sciences and lead author on the paper. "Based on our findings, they, too, could retreat in a geologic instant."

The new findings will allow scientists to more accurately predict how global warming will affect ice sheets and the potential for rising sea levels in the future, by developing more robust climate and ice sheet models.

Briner said the findings are especially relevant to the Jakobshavn Isbrae, Greenland's largest and fastest moving tidewater glacier, which is retreating under conditions similar to those he studied in the Canadian Arctic.

Acting like glacial conveyor belts, tidewater glaciers are the primary mechanism for draining ice sheet interiors by delivering icebergs to the ocean.

"These 'iceberg factories' exhibit rapid fluctuations in speed and position, but predicting how quickly they will retreat as a result of global warming is very challenging," said Briner.

That uncertainty prompted the UB team to study the rates of retreat of a prehistoric tidewater glacier, of similar size and geometry to contemporary ones, as way to get a longer-term view of how fast these glaciers can literally disappear.

The researchers used a special dating tool at UB to study rock samples they extracted from a large fjord that drained the ice sheet that covered the North American Arctic during the past Ice Age.

The samples provided the researchers with climate data over a period from 20,000 years ago to about 5,000 years ago, a period when significant warming occurred.

"Even though the ice sheet retreat was ongoing throughout that whole period, the lion's share of the retreat occurred in a geologic instant -- probably within as little as a few hundred years," said Briner.

The UB research reveals that the period of rapid retreat was triggered once the glacier entered deep ocean waters, nearly a kilometer deep, Briner said.

"The deeper water makes the glacier more buoyant," he explained.

"Because the rates of retreat were so much higher in the deep fjord, versus earlier when it terminated in more shallow waters or on land, the findings suggest that contemporary tidewater glaciers in Greenland and Antarctica that are retreating into deep waters may begin to experience even faster rates of retreat than are currently being observed," said Briner.

Right now, Jakobshavn Isbrae is draining into waters that are nearly a kilometer deep, he said, which means that its current rates of retreat -- as fast as 10 kilometers in the past decade -- could continue for the next hundred years.

"If modern glaciers do this for several decades, this would rapidly raise global sea level, intercepting coastal populations and requiring vast re-engineering of levees and other mitigation systems," said Briner.

Co-authors on the paper were Aaron C. Bini, formerly a master's of science candidate in the UB Department of Geology, and Robert S. Anderson, Ph.D., in the Department of Geological Sciences at the University of Colorado, Boulder.

Briner's research was funded by the National Science Foundation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>