Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Sheets Can Retreat "In a Geologic Instant," Study of Prehistoric Glacier Shows

23.06.2009
Findings are relevant to modern Greenland ice sheet, says UB researcher

Modern glaciers, such as those making up the Greenland and Antarctic ice sheets, are capable of undergoing periods of rapid shrinkage or retreat, according to new findings by paleoclimatologists at the University at Buffalo.

The paper, published on June 21 in Nature Geoscience, describes fieldwork demonstrating that a prehistoric glacier in the Canadian Arctic rapidly retreated in just a few hundred years.

The proof of such rapid retreat of ice sheets provides one of the few explicit confirmations that this phenomenon occurs.

Should the same conditions recur today, which the UB scientists say is very possible, they would result in sharply rising global sea levels, which would threaten coastal populations.

"A lot of glaciers in Antarctica and Greenland are characteristic of the one we studied in the Canadian Arctic," said Jason Briner, Ph.D., assistant professor of geology in the UB College of Arts and Sciences and lead author on the paper. "Based on our findings, they, too, could retreat in a geologic instant."

The new findings will allow scientists to more accurately predict how global warming will affect ice sheets and the potential for rising sea levels in the future, by developing more robust climate and ice sheet models.

Briner said the findings are especially relevant to the Jakobshavn Isbrae, Greenland's largest and fastest moving tidewater glacier, which is retreating under conditions similar to those he studied in the Canadian Arctic.

Acting like glacial conveyor belts, tidewater glaciers are the primary mechanism for draining ice sheet interiors by delivering icebergs to the ocean.

"These 'iceberg factories' exhibit rapid fluctuations in speed and position, but predicting how quickly they will retreat as a result of global warming is very challenging," said Briner.

That uncertainty prompted the UB team to study the rates of retreat of a prehistoric tidewater glacier, of similar size and geometry to contemporary ones, as way to get a longer-term view of how fast these glaciers can literally disappear.

The researchers used a special dating tool at UB to study rock samples they extracted from a large fjord that drained the ice sheet that covered the North American Arctic during the past Ice Age.

The samples provided the researchers with climate data over a period from 20,000 years ago to about 5,000 years ago, a period when significant warming occurred.

"Even though the ice sheet retreat was ongoing throughout that whole period, the lion's share of the retreat occurred in a geologic instant -- probably within as little as a few hundred years," said Briner.

The UB research reveals that the period of rapid retreat was triggered once the glacier entered deep ocean waters, nearly a kilometer deep, Briner said.

"The deeper water makes the glacier more buoyant," he explained.

"Because the rates of retreat were so much higher in the deep fjord, versus earlier when it terminated in more shallow waters or on land, the findings suggest that contemporary tidewater glaciers in Greenland and Antarctica that are retreating into deep waters may begin to experience even faster rates of retreat than are currently being observed," said Briner.

Right now, Jakobshavn Isbrae is draining into waters that are nearly a kilometer deep, he said, which means that its current rates of retreat -- as fast as 10 kilometers in the past decade -- could continue for the next hundred years.

"If modern glaciers do this for several decades, this would rapidly raise global sea level, intercepting coastal populations and requiring vast re-engineering of levees and other mitigation systems," said Briner.

Co-authors on the paper were Aaron C. Bini, formerly a master's of science candidate in the UB Department of Geology, and Robert S. Anderson, Ph.D., in the Department of Geological Sciences at the University of Colorado, Boulder.

Briner's research was funded by the National Science Foundation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>