Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice sheet retreat controlled by the landscape

17.10.2012
Ice-sheet retreat can halt temporarily during long phases of climate warming, according to scientists.

A UK team led by Durham University has found that the geometry of channels beneath the ice can be a strong control on ice behaviour, temporarily hiding the signals of retreat.


This is an Iceberg MargueriteBay.
Credit: Durham University

The findings, which provide the first simulation of past ice-sheet retreat and collapse over a ten thousand year period in Antarctica, shed new light on what makes ice stable or unstable and will help refine predictions of future ice extent and global sea-level rise, the researchers say.

The International Panel on Climate Change (IPCC) has stated that one of the main challenges in predicting future sea-level rise is to quantify and model the interactions between evolving ice sheets, oceans, sea level and climate. Significant efforts have been made over the last decade to develop computer models and collect data in order to reduce uncertainties and understand the potential impacts under scenarios of future climate change.

The results of the new research from Durham University, the University of Sheffield, the University of Cambridge, and the British Antarctic Survey are published in the journal Nature Geoscience.

Lead author Dr Stewart Jamieson, a glaciologist at the Department of Geography, Durham University, said: "Our research shows that the physical shape of the channels is a more important factor in controlling ice stability than was previously realised. Channel width can have a major effect on ice flow, and determines how fast retreat, and therefore sea-level rise, can happen.

Although climatic and oceanic changes are crucial drivers of ice loss, the research shows that the landscape below the ice strongly controls the speed of any retreat.

Dr Jamieson said: "Our results suggest that during an overall phase of retreat an ice stream can appear almost stable when in fact, in the longer-term, the opposite may be the case.

"Getting a clearer picture of the landscape beneath the ice is crucial if future predictions of change in the ice-sheets and sea level are to be improved."

Marine-based ice streams are the fast flowing arteries of ice sheets, draining approximately 90 per cent of the ice that reaches the sea. They flow through large channels where the ice can move thousands of metres in a year. According to the scientists, the unpredictable nature of ice streams makes forecasting ice-sheet retreat extremely difficult. If ice streams speed up they can cause sea level to rise.

Durham University co-author Dr Chris Stokes said: "Ice streams are like taps filling a bath, but the problem here is that we do not know if something is suddenly going to turn them up or even turn them down."

Satellite imagery from the last 20 years has led to advances in our knowledge of ice sheet stability and has shown that many ice streams are getting thinner and retreating because the ocean and climate are warming. The new research shows that ice behaviour over thousands of years can successfully be simulated in places where ice streams meet the sea.

The researchers looked at the landscape of the seafloor in Marguerite Bay, in the Antarctic Peninsula, and saw that during a rapid phase of recession 13,000 years ago, retreat paused many times. Using a computer model designed to work in situations of rapid change, they found they could reproduce the same pattern in a series of simulations. These showed that ice dragged on the sides of the channel more where it was narrow, causing retreat to slow and in places temporarily stop for decades to centuries before retreat continued.

Many ice streams are found in channels with beds that are below sea level and that deepen inland. Current theory suggests that ice loss can increase rapidly in deeper water, but the new findings show that channel width plays a crucial role and that narrow bottlenecks in the landscape beneath the ice can cause retreat to slow down.

Dr Andreas Vieli, Department of Geography, Durham University, said: "We can see from our simulations and from new maps of the ocean floor that these bottlenecks occur in the same place as pauses or slowdowns in past ice retreat. This means we should look more closely at the shape of the bed underneath Greenland and Antarctica to better understand how ice might retreat in the future."

The researchers say that understanding ice-stream behaviour and the rate of mass loss from ice sheets and glaciers is essential.

Dr Claus-Dieter Hillenbrand, from the British Antarctic Survey, said: "Knowledge of the factors influencing stability and retreat of ice streams is of particular concern because significant portions of the West Antarctic and Greenland ice sheets are currently losing mass that contributes significantly to sea-level rise. Our model results help to explain the apparently time-transgressive retreat of ice streams around Antarctica following the last ice age."

The research was financially supported by the Natural Environment Research Council, UK.

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>