Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More ice loss through snowfall on Antarctica

13.12.2012
Stronger snowfall increases future ice discharge from Antarctica.

Global warming leads to more precipitation as warmer air holds more moisture – hence earlier research suggested the Antarctic ice sheet might grow under climate change. Now a study published in Nature shows that a lot of the ice gain due to increased snowfall is countered by an acceleration of ice-flow to the ocean. Thus Antarctica’s contribution to global sea-level rise is probably greater than hitherto estimated, the team of authors from the Potsdam Institute for Climate Impact Research (PIK) concludes.

“Between 30 and 65 percent of the ice gain due to enhanced snowfall in Antarctica is countervailed by enhanced ice loss along the coastline,” says lead-author Ricarda Winkelmann. For the first time, an ensemble of ice-physics simulations shows that future ice discharge is increased up to three times because of additional precipitation in Antarctica under global warming. “The effect exceeds that of surface warming as well as that of basal ice-shelf melting,” Winkelmann says.

During the last decade, the Antarctic ice-sheet has lost volume at a rate comparable to that of Greenland. “The one certainty we have about Antarctica under global warming is that snowfall will increase,” Winkelmann explains. “Since surface melt might remain comparably small even under strong global warming, because Antarctica will still be a pretty chilly place, the big question is: How much more mass within the ice sheet will slowly but inexorably flow off Antarctica and contribute to sea-level rise, which is one of the major impacts of climate change.”

Since snowfall on the ice masses of Antarctica takes water out of the global water cycle, the continent’s net contribution to sea-level rise could be negative during the next 100 years – this is what a number of global and regional models suggest. The new findings indicate that this effect to a large extent is offset by changes in the ice-flow dynamics. Snow piling up on the ice is heavy and hence exerts pressure – the higher the ice the more pressure. Because additional snowfall elevates the grounded ice-sheet but less so the floating ice shelves, it flows more rapidly towards the coast of Antarctica where it eventually breaks off into icebergs and elevates sea level.

A number of processes are relevant for ice-loss in Antarctica, most notably to sub-shelf melting caused by warming of the surrounding ocean water. These phenomena explain the already observed contribution to sea-level rise.

“We now know that snowfall in Antarctica will not save us from sea-level rise,” says second author Anders Levermann, research domain co-chair at PIK and a lead author of the sea-level change chapter of the upcoming IPCC’s 5th assessment report. “Sea level is rising – that is a fact. Now we need to understand how quickly we have to adapt our coastal infrastructure; and that depends on how much CO2 we keep emitting into the atmosphere,” Levermann concludes.

Article: Winkelmann, R., Levermann, A., Martin, M.A., Frieler, K. (2012): Increased future ice discharge from Antarctica owing to higher snowfall. Nature [doi:10.1038/nature11616]

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>