Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does ice flow?

07.05.2010
Scientists from the Alfred Wegener Institute present first results of a new measurement method in Antarctica

Currently the yearly General Assembly of the European Geological Union takes place in Vienna, Austria. Dr. Olaf Eisen from the German Alfred Wegener Institute presents results from an environmentally friendly measurement method that he and his colleagues used on an Antarctic ice-shelf for the first time in early 2010. It supplies data that are input to models for the ice mass balance and thus permit better forecasting of future changes in the sea level.

The quality of scientific models depends to a decisive degree on the available database. Therefore members of a young investigators group supported by the German Research Foundation (DFG) now applied a special geophysical measurement method, vibroseismics, for data collection in the Antarctic for the first time. “By means of vibroseismic measurements, we would like to find out more about the structure of the ice and thus about the flow characteristics of the Antarctic ice sheet,” explains Dr. Olaf Eisen from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association. He is head of the LIMPICS young investigators group (Linking micro-physical properties to macro features in ice sheets with geophysical techniques).

Eisen now presents first results from geophysical measurement campaign in the Antarctic on the international conference. The objective of the expedition was to determine the internal structure of an ice sheet from its surface by means of geophysical methods. The cooperation partners are the Universities of Bergen (Norway), Swansea (Wales, UK), Innsbruck (Austria) and Heidelberg (Germany) and the Commission for Glaciology of the Bavarian Academy of Sciences and Humanities. For test purposes vibroseismics was used along with proven explosive seismic methods for the first time on an ice sheet.

One of the problems involved in the application of seismic methods on ice sheets is the very porous firn layer, which may be 50 to 100 metres thick. Explosive seismics involves drilling a hole, approximately 10 to 20 metres deep, into the firn to achieve a better coupling between the explosive charge and the surrounding firn or ice. Drilling takes a lot of time and permits only slow progress along the seismic profiles. Vibroseismics entails the generation of seismic waves directly on the surface. For this purpose the vibrator pad of a 16-ton vibroseis truck of the University of Bergen is pressed onto the precompressed firn and set into operation at a defined vibration rate. In contrast to explosive seismic methods, the excited seismic signal is known and can be repeatedly generated as frequently as desired, leading in the end to improved data quality. However, the loss of seismic energy in the porous firn is a disadvantage. Therefore, the scientists compare the explosive seismic and vibroseismic methods quantitatively and in this way want determine how much energy is propagating from the surface through the ice and reflected back to the surface. First data analyses show that vibroseismics is coequal to the classic explosive seismics concerning the amplitude of the waves sent into deeper snow and ice layers. An explicit advantage is the lower effort and thus less time and energy the scientists spend to measure seismic profiles now.

Yngve Kristoffersen, professor of geophysics at the University of Bergen, who provides the vibroseismic equipment, explains: “The successful pilot study opens up a new era for efficient and more environmentally friendly methods for obtaining seismic information on the internal structure of the ice and the bedrock underneath it. This would extend our knowledge about how the ice sheet moves across the bedrock and about the geological structure of the rock under the ice.” Furthermore, in the coming years this method will be applied during pre-site surveys of future geological drill sites under ice shelves, which will contribute to a better understanding of climate history.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the sixteen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>