Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice core drilling effort involving CU-Boulder to help assess abrupt climate change risks

03.08.2010
An international science team involving the University of Colorado at Boulder that is working on the North Greenland Eemian Ice Drilling project hit bedrock July 27 after two summers of work, drilling down more than 1.5 miles in an effort to help assess the risks of abrupt future climate change on Earth.

Led by Denmark and the United States, the team recovered ice from the Eemian interglacial period from about 115,000 to 130,000 years ago, a time when temperatures were 3.6 to 5.4 degrees Fahrenheit above today's temperatures. During the Eemian -- the most recent interglacial period on Earth -- there was substantially less ice on Greenland, and sea levels were more than 15 feet higher than today.

While three previous ice cores drilled in Greenland in the last 20 years recovered ice from the Eemian, the deepest layers were compressed and folded, making the data difficult to interpret. The new effort, known as NEEM, has allowed researchers to obtain thicker, more intact annual ice layers near the bottom of the core that are expected to contain crucial information about how Earth's climate functions, said CU-Boulder Professor Jim White, lead U.S. investigator on the project.

"Scientists from 14 countries have come together in a common effort to provide the science our leaders and policy makers need to plan for our collective future," said White, who directs CU-Boulder's Institute of Arctic and Alpine Research and is an internationally known ice core expert. "I hope that NEEM is a foretaste of the kind of cooperation we need for the future, because we all share the world."

Annual ice layers formed over millennia in Greenland by compressed snow reveal information on past temperatures and precipitation levels, as well as the contents of ancient atmospheres, said White. Ice cores from previous drilling efforts revealed temperature spikes of more than 20 degrees Fahrenheit in just 50 years in the Northern Hemisphere.

White said the new NEEM ice cores will more accurately portray past changes in temperatures and greenhouse gas concentrations in the Eemian, making it the best analogue for future climate change on Earth. An international study released by the National Oceanic and Atmospheric Administration last week showed the first decade of the 21st century was the warmest on record for the planet.

The NEEM project involves 300 scientists and students and is led by Professor Dorthe Dahl-Jensen, director of the University of Copenhagen's Centre of Ice and Climate. The United States portion of the effort is funded by the National Science Foundation's Office of Polar Programs.

The two meters of ice just above bedrock from NEEM -- which is located at one of the most inaccessible parts of the Greenland ice sheet -- go beyond the Eemian interglacial period into the previous ice age and contains rocks and other material that have not seen sunlight for hundreds of thousands of years, said White. The researchers expect the cores to be rich in DNA and pollen that can tell scientists about the plants that existed in Greenland before it became covered with ice.

The cores samples are being studied in detail using a suite of measurements, including stable water isotopes that reveal information about temperature and moisture changes back in time. The team is using state-of-the art laser instruments to measure the isotopes, as well as atmospheric gas bubbles trapped in the ice and ice crystals to understand past variations in climate on a year-by-year basis, said White.

As part of the project, the researchers want to determine how much smaller the Greenland ice sheet was 120,000 years ago when the temperatures were higher than present, as well as how much and how fast the Greenland ice sheet contributed to sea level. "We expect that our findings will increase our knowledge on the future climate system and increase our ability to predict the speed and final height of sea level rise during the Eemian," said Dahl-Jensen.

The NEEM facility includes a large dome, a drilling rig to extract 3-inch in diameter ice cores, drilling trenches, labs and living quarters. The United States is leading the laboratory analysis of atmospheric gases trapped in bubbles within the cores, including greenhouse gases like carbon dioxide and methane.

Other nations involved in NEEM include Belgium, Canada, France, Germany, Iceland, Japan, Korea, the Netherlands, Sweden, Switzerland and the United Kingdom. Other U.S. institutions involved in the effort include Oregon State University, Penn State, the University of California, San Diego and Dartmouth College.

Other CU-Boulder participants include postdoctoral researcher Vasilii Petrenko and doctoral student Tyler Jones. White also is a professor in CU-Boulder's geological sciences department.

The vast majority of climate scientists attribute rising temperatures on Earth to increased greenhouse gases pumped into the atmosphere as a result of human activity. In 2008 The Intergovernmental Panel on Climate Change concluded that temperatures on Earth could rise by as much as 10 degrees F above today's temperatures in the next century, primarily due to atmospheric greenhouse gases.

Additional information and photos on the NEEM effort can be found on the web at http://www.neem.ku.dk.

More information on the international NEEM deep drilling project can be obtained either by emailing White or contacting NEEM Field Operation Manager J.P. Steffensen at +299 84 11 51 or +299 52 41 25 or emailing him at neem-fom@gfy.ku.dk

James White | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>