Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBEX Spacecraft Finds Discoveries Close to Home

17.08.2010
Imagine floating 35,000 miles above the sunny side of Earth. Our home planet gleams below, a majestic whorl of color and texture. All seems calm around you. With no satellites or space debris to dodge, you can just relax and enjoy the black emptiness of space.

But looks can be deceiving.

In reality, you've unknowingly jumped into an invisible mosh pit of electromagnetic mayhem — the place in space where a supersonic "wind" of charged particles from the Sun crashes head-on into the protective magnetic bubble that surrounds our planet. Traveling at a million miles per hour, the solar wind's protons and electrons sense Earth's magnetosphere too late to flow smoothly around it. Instead, they're shocked, heated, and slowed almost to a stop as they pile up along its outer boundary, the magnetopause, before getting diverted sideways.

Space physicists have had a general sense of these dynamic goings-on for decades. But it wasn't until the advent of the Interstellar Boundary Explorer or IBEX, a NASA spacecraft launched in October 2008, that they've been able to see what the human eye cannot: the first-ever images of this electromagnetic crash scene. They can now witness how some of the solar wind's charged particles are being neutralized by gas escaping from Earth's atmosphere.

A New Way to See Atoms

IBEX wasn't designed to keep tabs on Earth's magnetosphere. Instead, its job is to map interactions occurring far beyond the planets, 8 to 10 billion miles away, where the Sun's own magnetic bubble, the heliosphere, meets interstellar space.

Only two spacecraft, Voyagers 1 and 2, have ventured far enough to probe this region directly. IBEX, which travels in a looping, 8-day-long orbit around Earth, stays much closer to home, but it carries a pair of detectors that can observe the interaction region from afar.

Here's how: When fast-moving protons in the solar wind reach the edge of the heliosphere, they sometimes grab electrons from the slower-moving interstellar atoms around them, like batons getting passed between relay runners. This charge exchange creates electrically neutral hydrogen atoms that are no longer controlled by magnetic fields. Suddenly, they're free to go wherever they want — and because they're still moving fast, they quickly zip away from the interstellar boundary in all directions.

Some of these "energetic neutral atoms," or ENAs, zip past Earth, where they're recorded by IBEX. Its two detectors don't take pictures with conventional optics. Instead, they record the number and energy of atoms arriving from small spots of sky about 7 degrees across (the apparent size of a tennis ball held at arm's length). Because its spin axis always points at the Sun, the spacecraft slowly turns throughout Earth's orbit and its detectors scan overlapping strips that create a complete 360 degrees map every six months.

A Collision Zone Near Earth

Because IBEX is orbiting Earth, it also has a front-row seat for observing the chaotic pileup of solar-wind particles occurring along the "nose" of Earth's magnetopause, about 35,000 miles out. ENAs are created there too, as solar-wind protons wrest electrons from hydrogen atoms in the outermost vestiges of our atmosphere, the exosphere.

Other spacecraft have attempted to measure the density of the dayside exosphere, without much success. NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft probably detected ENAs from this region a decade ago, but its detectors didn't have the sensitivity to pinpoint or measure the source.

Now, thanks to IBEX, we know just how tenuous the outer exosphere really is. "Where the interaction is strongest, there are only about eight hydrogen atoms per cubic centimeter," explains Stephen A. Fuselier, the Lockheed Martin Space Systems researcher who led the mapping effort. His team's results appear in the July 8 issue of Geophysical Research Letters.

The key observations were made in March and April 2009, when IBEX was located far from Earth — about halfway to the Moon's orbit — and its detectors could scan the region directly in front of the magnetopause. During some of the March observations, the European Space Agency's Cluster 3 spacecraft was positioned just in front of the magnetopause, where it measured the number of deflected solar-wind protons directly. "Cluster played a very important role in this study," Fuselier explains. "It was in the right place at the right time."

The new IBEX maps show that the ENAs thin out at locations away from the point of peak intensity. This falloff makes sense, Fuselier says, because Earth's magnetopause isn't spherical. Instead, it has a teardrop shape that's closest to Earth at its nose but farther away everywhere else. So at locations well away from the magnetopause's centerline, even fewer of the exosphere's hydrogen atoms are hanging around to interact with the solar wind. "No exosphere, no ENAs," he explains.

A Versatile Spacecraft

Since its launch, IBEX has also scanned another nearby world, with surprising results. The moon has no atmosphere or magnetosphere, so the solar wind slams unimpeded into its desolate surface. Most of those particles get absorbed by lunar dust. In fact, space visionaries wonder if the moon's rubbly surface has captured enough helium-3, an isotope present in tiny amounts in the Sun's outflow, to serve as a fuel for future explorers.

Yet cosmic chemists have long thought that some solar-wind protons must be bouncing off the lunar surface, becoming ENAs through charge exchange as they do. So does the moon glow in IBEX's scans? Indeed it does, says David J. McComas of Southwest Research Institute in San Antonio, Texas, who serves as the mission's Principal Investigator.

In a report published last year in Geophysical Research Letters, McComas and other researchers conclude that about 10 percent of the solar-wind particles striking the Moon escape to space as ENAs detectable by IBEX. That amounts to roughly 150 tons of recycled hydrogen atoms per year.

Meanwhile, the squat, eight-sided spacecraft continues its primary task of mapping the interactions between the outermost heliosphere and the interstellar medium that lies beyond. McComas and his team are especially eager to learn more about the mysterious and unexpected "ribbon" of ENAs that turned up in the spacecraft's initial all-sky map.

At NASA's Goddard Space Flight Center in Greenbelt, Md., IBEX Mission Scientist Robert MacDowall says the spacecraft should be able to continue its observations through at least 2012. "We weren't sure those heliospheric interactions would vary with time, but they do," he explains, "and it's great that IBEX will be able to record them for years to come."

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/ibex/em-crash.html

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>