Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrocarbons in the deep Earth

19.04.2011
A computer modeling study published in the journal Proceedings of the National Academy of Sciences shows that at deep Earth pressures and temperatures, longer hydrocarbons may be formed from the simplest one, the methane molecule.

Hydrocarbon molecules are the main building blocks of crude oil and natural gas, and determining their thermochemical properties is important to understand carbon reservoirs and fluxes in the Earth.

Geologists and geochemists believe that nearly all of the hydrocarbons in commercially produced crude oil and natural gas are formed by the decomposition of the remains of living organisms buried under layers of sediments in the Earth's crust, a region that extends five to 10 miles below the Earth's surface.

But "abiogenic" hydrocarbons of purely chemical deep crustal or mantle origin could occur in some geologic settings, such as rifts or subduction zones, said Giulia Galli, professor of chemistry and of physics at UC Davis and senior author on the study.

"Our simulation study shows that methane molecules can combine to form larger hydrocarbon molecules when exposed to the very high temperatures and pressures of the Earth's upper mantle. We don't say that higher hydrocarbons actually occur under the realistic 'dirty' Earth mantle conditions, but the pressures and temperatures are right," she said.

Galli and her colleagues used the University of California's Mako computer cluster in Berkeley and computers at the Lawrence Livermore National Laboratory to simulate the behavior of carbon and hydrogen atoms at the enormous pressures and temperatures found 40 to 95 miles deep inside the Earth.

They used sophisticated techniques based on first principles (the basic properties of carbon and hydrogen atoms) and the computer software system Qbox, developed at UC Davis by Francois Gygi, a professor in the Department of Computer Science.

The researchers found that hydrocarbons with multiple carbon atoms can form from methane, (a molecule with only one carbon and four hydrogen atoms) at temperatures greater than 1,500 K (2,240 degrees F) and pressures 50,000 times those at the Earth's surface, conditions found about 70 miles below the surface.

"In the simulation, interactions with metal or carbon surfaces allowed the process to occur faster; they act as 'catalysts'," said Leonardo Spanu, assistant researcher at UC Davis and the first author of the paper.

The research does not address whether hydrocarbons formed that deep in the Earth could migrate closer to the surface and contribute to exploitable oil or gas deposits. However, the study is fundamentally important because it points to possible microscopic mechanisms of hydrocarbon formation under very high temperatures and pressures.

Galli and some of her collaborators at UC Davis are part of a larger project, the Deep Carbon Observatory, supported by the Alfred P. Sloan Foundation; Galli is co-chair of the observatory's Physics and Chemistry of Carbon directorate. The aim of the observatory is to study the Earth's carbon cycle, including the presence of hydrocarbons and the possibility of microbial life deep in the planet.

Galli's co-authors are Davide Donadio at the Max Planck Institute in Mainz, Germany; Detlef Hohl at Shell Global Solutions, Houston; and Eric Schwegler, Lawrence Livermore National Laboratory.

The research was supported by Shell.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

nachricht An Atom Trap for Water Dating
28.02.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>