Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hurricanes can be 50 percent stronger if passing over fresh water, says Texas A&M study

If a hurricane's path carries it over large areas of fresh water, it will potentially intensify 50 percent faster than those that do not pass over such regions, meaning it has greater potential to become a stronger storm and be more devastating, according to a study co-written by a group of researchers at Texas A&M University.
Ping Chang, professor of oceanography and atmospheric sciences and director of the Texas Center for Climate Studies, along with his former student, Karthik Balaguru, now at the Department of Energy's Pacific Northwest National Laboratory, are the lead authors of a paper in the current issue of PNAS (Proceedings of the National Academy of Sciences).

Their findings could benefit weather experts as they try to predict the path and strength of a hurricane, noting that about 60 percent of the world's population resides in areas that are prone to hurricanes or cyclones.

Chang and Balaguru and their colleagues examined Tropical Cyclones for the decade 1998-2007, which includes about 587 storms, paying particular attention to Hurricane Omar. Omar was a Category 4 hurricane that formed in 2008 and eventually caused about $80 million in damages in the south Caribbean area.

They analyzed data from the oceanic region under the storm, including the salt and temperature structure of the water and other factors that played a part in the storm's intensity.

"We tested how the intensity of the storm and others increased over a 36-hour period," Chang explains.

"We were looking for indications that the storm increased in intensity or weakened and compared it to other storms. This is near where the Amazon and Orinoco Rivers flow into the Atlantic Ocean, and there are immense amounts of freshwater in the region. We found that as a storm enters an area of freshwater, it can intensify 50 percent faster on average over a period of 36 hours when compared to storms that do not pass over such regions."

The researchers believe their results could help in predicting a hurricane's strength as it nears large river systems that flow into oceans, such as the Amazon in the Atlantic, the Ganges in the Indian Ocean or even the Mississippi River into the Gulf of Mexico.

Hurricanes – called typhoons in the Pacific region and cyclones in the Indian region – are some of the most devastating natural hazards on Earth. A single storm, Cyclone Nargis in 2008, killed more than 138,000 people in Burma and caused $10 billion in damages.

"If we want to improve the accuracy of hurricane forecasting, we need to have a better understanding of not only the temperature, but also the salinity structure of the oceanic region under the storm," Chang notes.

"If we know a hurricane's likely path, we can project if it might become stronger when nearing freshwater regions. This is another tool to help us understand how a storm can intensify."

The team's work was funded by grants from the National Science Foundation, the Department of Energy and the National Science Foundation of China. About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or; or Ping Chang at (979) 845-8196 or

More news about Texas A&M University, go to

Follow us on Twitter at

Keith Randall | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>