Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricanes can be 50 percent stronger if passing over fresh water, says Texas A&M study

14.08.2012
If a hurricane's path carries it over large areas of fresh water, it will potentially intensify 50 percent faster than those that do not pass over such regions, meaning it has greater potential to become a stronger storm and be more devastating, according to a study co-written by a group of researchers at Texas A&M University.
Ping Chang, professor of oceanography and atmospheric sciences and director of the Texas Center for Climate Studies, along with his former student, Karthik Balaguru, now at the Department of Energy's Pacific Northwest National Laboratory, are the lead authors of a paper in the current issue of PNAS (Proceedings of the National Academy of Sciences).

Their findings could benefit weather experts as they try to predict the path and strength of a hurricane, noting that about 60 percent of the world's population resides in areas that are prone to hurricanes or cyclones.

Chang and Balaguru and their colleagues examined Tropical Cyclones for the decade 1998-2007, which includes about 587 storms, paying particular attention to Hurricane Omar. Omar was a Category 4 hurricane that formed in 2008 and eventually caused about $80 million in damages in the south Caribbean area.

They analyzed data from the oceanic region under the storm, including the salt and temperature structure of the water and other factors that played a part in the storm's intensity.

"We tested how the intensity of the storm and others increased over a 36-hour period," Chang explains.

"We were looking for indications that the storm increased in intensity or weakened and compared it to other storms. This is near where the Amazon and Orinoco Rivers flow into the Atlantic Ocean, and there are immense amounts of freshwater in the region. We found that as a storm enters an area of freshwater, it can intensify 50 percent faster on average over a period of 36 hours when compared to storms that do not pass over such regions."

The researchers believe their results could help in predicting a hurricane's strength as it nears large river systems that flow into oceans, such as the Amazon in the Atlantic, the Ganges in the Indian Ocean or even the Mississippi River into the Gulf of Mexico.

Hurricanes – called typhoons in the Pacific region and cyclones in the Indian region – are some of the most devastating natural hazards on Earth. A single storm, Cyclone Nargis in 2008, killed more than 138,000 people in Burma and caused $10 billion in damages.

"If we want to improve the accuracy of hurricane forecasting, we need to have a better understanding of not only the temperature, but also the salinity structure of the oceanic region under the storm," Chang notes.

"If we know a hurricane's likely path, we can project if it might become stronger when nearing freshwater regions. This is another tool to help us understand how a storm can intensify."

The team's work was funded by grants from the National Science Foundation, the Department of Energy and the National Science Foundation of China. About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; or Ping Chang at (979) 845-8196 or ping@tamu.edu

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at http://twitter.com/tamu/

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>