Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans stoked Australia’s unprecedented ‘angry summer’ heat, study finds

27.06.2013
Human influences that drive global warming are likely to have played a role in Australia's exceedingly hot summer of 2013, the hottest in that country’s observational record. A new study shows that global warming has increased the chances of Australians experiencing record hot summers, such as the summer of 2013, by more than five times.

"Our research has shown that, due to greenhouse gas emissions, these types of extreme summers will become even more frequent and more severe in the future," said Sophie Lewis of the University of Melbourne in Victoria,Australia, who is lead author of the study.


The Australian continent endured unprecedented high temperatures in the summer of 2013. This image, using data from NASA’s Aqua satellite, shows Australian land-surface-temperature anomalies, or departures from average, during Jan. 1-8, 2013. Red means above-average temperature; blue, below average; grey, incomplete data. Australia’s summer occurs during the northern-hemisphere winter. (Image credit: Jesse Allen, NASA Earth Observatory).

It is possible to say with more than 90-percent confidence, she added, that human influences on the atmosphere dramatically increased the likelihood of the extreme summer of 2013.

Lewis is also with the Australian Research Council (ARC) Centre of Excellence for Climate System Science.

The study has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

The study used climate observations and more than 90 climate model simulations of summer temperatures in Australia over the past 100 years. Australia’s summer occurs from December to February, during the northern-hemisphere winter.

David Karoly, also of the University of Melbourne and the ARC Centre and co-author of the paper, said the observations, coupled with a suite of climate-model runs comparing human and natural influences in parallel experiments, indicate that Australia has experienced a very unusual summer at a time when it was not expected.

The combination of extreme heat, bush fires and flooding prompted Australians to dub last summer the "angry summer," the researchers note in their paper.

"This extreme summer is not only remarkable for its record-breaking nature but also because it occurred at a time of weak La Niña to neutral conditions, which generally produce cooler summers," Karoly said. "Importantly, our research shows the natural variability of El Niño Southern Oscillation is unlikely to explain the recent record temperatures."

This analysis of the causes of the record 2013 Australian summer is one of the fastest ever performed worldwide for a significant climate event. This fast-response analysis was made possible because data from many existing climate models and observations were made available through Centre of Excellence collaborations with Australia’s Commonwealth Scientific and Industrial Research Organisation, Bureau of Meteorology and the National Computational Infrastructure (NCI). "The new data resource means scientists are able to work on understanding and addressing the problems of extreme climate events sooner," Karoly said.

The ARC Centre of Excellence for Climate System Science and the NCI National Facility funded this research.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link:
http://onlinelibrary.wiley.com/doi/10.1002/grl.50673/abstract

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.
Title:

"Anthropogenic contributions to Australia’s record summer temperatures of 2013"
Authors:
Sophie C. Lewis and David J. Karoly School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Victoria, Australia.

Contact information for the coauthor:

Sophie Lewis, Tel: +61 3 8344 6931, email: sophie.lewis@unimelb.edu.au

David Karoly, Tel: +61 3 8344 4698, email: dkaroly@unimelb.edu.au

AGU Contact:
Peter Weiss
+1 (202) 777-7507
pweiss@agu.org
University of Melbourne Contact:
Rebecca Scott
Mobile +61-0417164791
rebeccas@unimelb.edu.au
ARC Centre Contact:
Alvin Stone
Mobile +61-0418 617 366
alvin.stone@unsw.edu.au

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>