Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human-made climate change suppresses the next ice age

14.01.2016

Humanity has become a geological force that is able to suppress the beginning of the next ice age, a study now published in the renowned scientific journal Nature shows. Cracking the code of glacial inception, scientists of the Potsdam Institute for Climate Impact Research found the relation of insolation and CO2 concentration in the atmosphere to be the key criterion to explain the last eight glacial cycles in Earth history. At the same time their results illustrate that even moderate human interference with the planet’s natural carbon balance might postpone the next glacial inception by 100.000 years.

“Even without man-made climate change we would expect the beginning of a new ice age no earlier than in 50.000 years from now – which makes the Holocene as the present geological epoch an unusually long period in between ice ages,” explains lead author Andrey Ganopolski. “However, our study also shows that relatively moderate additional anthropogenic CO2-emissions from burning oil, coal and gas are already sufficient to postpone the next ice age for another 50.000 years. The bottom line is that we are basically skipping a whole glacial cycle, which is unprecedented. It is mind-boggling that humankind is able to interfere with a mechanism that shaped the world as we know it.”


Landscape shaped by Permafrost dynamics near Spitzbergen.

Photo: Alfred-Wegener-Institute/Jaroslav Obu

For the first time, research can explain the onset of the past eight ice ages by quantifying several key factors that preceded the formation of each glacial cycle. “Our results indicate a unique functional relationship between summer insolation and atmospheric CO2 for the beginning of a large-scale ice-sheet growth which does not only explain the past, but also enables us to anticipate future periods when glacial inception might occur again,” Ganopolski says.

Humanity as a geological force

Using an elaborate Earth system model simulating atmosphere, ocean, ice sheets and global carbon cycle at the same time, the scientists analyzed the effects of further human-made CO2-emissions on the ice volume on the Northern Hemisphere.

“Due to the extremely long life-time of anthropogenic CO2 in the atmosphere, past and future emissions have a significant impact on the timing of the next glacial inception,” co-author Ricarda Winkelmann says.

“Our analysis shows that even small additional carbon emissions will most likely affect the evolution of the Northern Hemisphere ice sheets over tens of thousands of years, and moderate future anthropogenic CO2-emissions of 1000 to 1500 Gigatons of Carbon are bound to postpone the next ice age by at least 100.000 years.”

The quest for the drivers of glacial cycles remains one of the most fascinating questions of Earth system analysis and especially paleoclimatology, the study of climate changes throughout the entire history of our planet. Usually, the beginning of a new ice age is marked by periods of very low solar radiation in the summer, like at current times.

However, at present there is no evidence for the beginning of a new ice age: “This is the motivation for our study. Unravelling the mystery of the mechanisms driving past glacial cycles also facilitates our ability to predict the next glacial inception,” Winkelmann says.

“Like no other force on the planet, ice ages have shaped the global environment and thereby determined the development of human civilization. For instance, we owe our fertile soil to the last ice age that also carved out today’s landscapes, leaving glaciers and rivers behind, forming fjords, moraines and lakes.

However, today it is humankind with its emissions from burning fossil fuels that determines the future development of the planet,” co-author and PIK-Director Hans Joachim Schellnhuber says. “This illustrates very clearly that we have long entered a new era, and that in the Anthropocene humanity itself has become a geological force. In fact, an epoch could be ushered in which might be dubbed the Deglacial.”

Article: Ganopolski, A., Winkelmann, R., Schellnhuber, H.J. (2016): Critical insolation-CO2 relation for diagnosing past and future glacial inception. Nature [DOI:10.1038/nature16494]

Weblink to the article once it is published: http://www.nature.com/nature/index.html


For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>