Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human Effect on Winds Dries, Warms Springs in U.S. Southwest

Since the 1970s, the winter storm track in the western U.S. has been shifting north, particularly in the late winter. As a result, there are fewer winter storms that bring rain and snow to Southern California, Arizona, Nevada, Utah, western Colorado and western New Mexico.

"We used to have this season from October to April where we had a chance for a storm," says Stephanie A. McAfee of the University of Arizona in Tucson, who is lead author of the new study. "Now it's from October to March."

The new study is the first to link the poleward movement of the westerly winds to the changes observed in the West's winter storm pattern. The change in the westerlies is driven by the atmospheric effects of global warming and the ozone hole combined.

"When you pull the storm track north, it takes the storms with it,"
McAfee says.
She and Joellen Russell, also of the University of Arizona, report their findings in an upcoming issue of Geophysical Research Letters, a journal of the American Geophysical Union.

"During the period it's raining less, it also tends to be warmer than it used to be," McAfee says. "We're starting to see the impacts of climate change in the late winter and early spring, particularly in the Southwest. It's a season-specific kind of drought."

Having drier, warmer conditions occur earlier in the year will affect snowpack, hydrological processes and water resources, McAfee says. In prior studies, other researchers have linked warmer, drier springs to more and larger forest fires.

"We're used to thinking about climate change as happening sometime in the future to someone else," Russell says. "But this is right here and affects us now. The future is here."

Atmospheric scientists have documented that the westerly winds, or storm track, have been shifting poleward for several decades. The southwestern U.S. has experienced less winter precipitation during the same period.

Computer models of future climate and atmospheric conditions suggest the storm track will continue to move north and that precipitation will continue to decrease in the southwestern U.S.

The timing of the change from wet, cool winter weather to the warmer dry season is important for many ecological processes in the arid Southwest. Therefore, McAfee wanted to know how the shift in the storm track affected precipitation during the transition from winter to spring.

For the period 1978 to 1998, the researchers compared the month- to-month position of the winter storm track, temperature and precipitation records from the western U.S., and pressure at different levels in the atmosphere.

The team used a statistical method called Monte Carlo simulations to test whether the coincidence of storm track and weather patterns had occurred by chance.

Russell says the results of the simulation showed, "It's very rare that you get this distribution by chance." Therefore, she says, the changes in late winter precipitation in the West from 1978 to 1998 are related to the changes in the storm track path for that same time period.

McAfee says her next step is investigating whether western vegetation has changed as the storm track has changed.

The National Oceanic and Atmospheric Administration funded this research.

Peter Weiss | AGU
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>