Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Contribution to Glacier Mass Loss on the Increase

15.08.2014

By combining climate and glacier models, scientists headed by Ben Marzeion from the University of Innsbruck have found unambiguous evidence for anthropogenic glacier mass loss in recent decades.

In a paper published in Science, the researchers report that about one quarter of the global glacier mass loss during the period of 1851 to 2010 is attributable to anthropogenic causes. The fraction of human contribution increased steadily and accelerated to almost two thirds between 1991 and 2010.


This image shows the Artesonraju Glacier in Cordillera Blanca, Peru.

Ben Marzeion

The ongoing global glacier retreat causes rising sea-levels, changing seasonal water availability and increasing geo-hazards. While melting glaciers have become emblematic of anthropogenic climate change, glacier extent responds very slowly to climate changes.

“Typically, it takes glaciers decades or centuries to adjust to climate changes,” says climate researcher Ben Marzeion from the Institute of Meteorology and Geophysics of the University of Innsbruck. The global retreat of glaciers observed today started around the middle of the 19th century at the end of the Little Ice Age. Glaciers respond both to naturally caused climate change of past centuries, for example solar variability, and to anthropogenic changes. The real extent of human contribution to glacier mass loss has been unclear until now.

Anthropogenic causes

By using computer simulations of the climate, Ben Marzeion’s team of researchers simulated glacier changes during the period of 1851 and 2010 in a model of glacier evolution. “The results of our models are consistent with observed glacier mass balances,” says Marzeion.

All glaciers in the world outside Antarctica were included in the study. The recently established Randolph Glacier Inventory (RGI), a complete inventory of all glaciers worldwide, enabled the scientists to run their model. “The RGI provides data of nearly all glaciers on the Earth in machine-readable format,” explains Graham Cogley from Trent University in Canada, one of the coordinators of the RGI and co-author of the current study.

Since the climate researchers are able to include different factors contributing to climate change in their model, they can differentiate between natural and anthropogenic influences on glacier mass loss. “While we keep factors such as solar variability and volcanic eruptions unchanged, we are able to modify land use changes and greenhouse gas emissions in our models,” says Ben Marzeion, who sums up the study: “In our data we find unambiguous evidence of anthropogenic contribution to glacier mass loss.”

Significant increase in recent decades

The scientists show that only about one quarter (25 +/-35 %) of the global glacier mass loss during the period of 1851 to 2010 is attributable to anthropogenic causes. However, during the last two decades between 1991 and 2010 the fraction increased to about two thirds (69+/-24%).

“In the 19th and first half of 20th century we observed that glacier mass loss attributable to human activity is hardly noticeable but since then has steadily increased,” says Ben Marzeion. The authors of the study also looked at model results on regional scales.

However, the current observation data is insufficient in general to derive any clear results for specific regions, even though anthropogenic influence is detectable in a few regions such as North America and the Alps. In these regions, glaciers changes are particularly well documented.

The study is supported, among others, by the Austrian Science Fund (FWF) and the research area Scientific Computing at the University of Innsbruck.

Publication: Attribution of global glacier mass loss to anthropogenic and natural causes. Ben Marzeion, J. Graham Cogley, Kristin Richter, & David Parkes. Science Express, published online August 14 2014 DOI: 10.1126/science.1254702

Contact:
Priv.-Doz. Dr. Ben Marzeion
Institut für Meteorologie und Geophysik
Universität Innsbruck
phone: +43 512 507-5482
email: ben.marzeion@uibk.ac.at
web: http://www.marzeion.info/

Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.1254702 - Attribution of global glacier mass loss to anthropogenic and natural causes. Ben Marzeion, J. Graham Cogley, Kristin Richter, & David Parkes. Science Express, published online August 14 2014
http://www.marzeion.info - Website Ben Marzeion
http://www.uibk.ac.at/meteo - Institute of Meteorology and Geophysics, University of Innsbruck

Dr. Christian Flatz | Universität Innsbruck

More articles from Earth Sciences:

nachricht The Arctic: Interglacial period with a break
28.05.2015 | Goethe-Universität Frankfurt am Main

nachricht Over 70% of glacier volume in Everest region could be lost by 2100
27.05.2015 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>