Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hulking hurricanes: Seeking greater accuracy in predicting storm strength

07.12.2016

To better predict tropical cyclone intensity, scientists sponsored by the Office of Naval Research (ONR) recently worked with the National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration to gather atmospheric data from storms that formed in the Atlantic Ocean in 2016.

Fully developed tropical cyclones -- variously called hurricanes, typhoons or cyclones, depending on their region--can grow as wide as several hundred miles and sustain winds faster than 150 miles per hour. For example, Typhoon Tip (1979) had 190-mph winds and Hurricane Patricia (2015) whipped up 215-mph winds (the record).


A NASA unmanned Global Hawk plane used to gather atmospheric data from hurricanes that formed in the Atlantic Ocean in 2016. To better predict hurricane intensity, scientists sponsored by the Office of Naval Research are studying this data to design more accurate weather-forecasting systems.

Credit: National Aeronautics and Space Administration

Such storms are notoriously difficult to predict, presenting a volatile meteorological cocktail that can change direction, speed and strength, quickly and unexpectedly. They pose a severe threat to U.S. Navy fleet operations--so accurate forecasting is critical for protecting ships at sea, evacuating vulnerable bases, and performing humanitarian assistance and disaster relief.

"Think about the ships, equipment, people and assets that must be moved to safety before a hurricane hits," said Dr. Ronald Ferek, a program manager in ONR's Ocean Battlespace Sensing Department. "This represents a huge investment of resources. If we can improve the lead time and accuracy of storm forecasts, it would give naval leadership more time and detailed information for preparations, evacuation or shelter-in-place decisions."

The recent research involved flying NASA's unmanned Global Hawk planes above hurricanes -- more than 60,000 feet in the air -- and deploying sensor-laden dropsondes. Dropsondes are parachute- and GPS-equipped devices that measure temperature, humidity, moisture, wind speed and direction, pressure and altitude -- crucial factors in determining the potential strength and destructiveness of a hurricane.

The Global Hawks flew nine missions this year -- dropping 647 dropsondes -- culminating in three flights above Hurricane Matthew, a Category 5 storm that battered the East Coast in October. ONR is sponsoring efforts by the Naval Research Laboratory (NRL) and several universities to analyze and interpret the collected data, and integrate it into computerized prediction models.

"Dropsondes are valuable because they take numerous readings as they descend through the storm to the ocean's surface," said Dr. James Doyle, who works in NRL's Marine Meteorology Division in Monterey, Calif. "This provides in-depth information about internal storm structure, and the environment surrounding the storm."

This year's work builds on the Coupled Ocean/Atmosphere Mesoscale Prediction System-Tropical Cyclone -- COAMPS-TC, for short. This groundbreaking computer-forecasting tool was developed under ONR sponsorship and put into operations at the Fleet Numerical Meteorological and Oceanographic Center in 2013. COAMPS-TC uses complex algorithms to predict hurricane intensity by processing real-time and historical meteorological data, fed by information from satellites and remote-sensing stations.

Although weather forecasters have become better at forecasting a hurricane's path and landfall, they struggle with predicting its strength. But Doyle said this is improving as unmanned planes like the Global Hawk enable data collection from the storm's upper layer, which can rise over 60,000 feet in height. This layer is where tropical cyclones expel the air that ascends rapidly through deep thunderstorms found in the eyewall--where the greatest wind speed and precipitation are found.

Both Ferek and Doyle believe the upper layer dramatically impacts hurricane intensity. They're especially interested in learning how jet streams interact with the upper layer--as well as its effects on the eyewall and secondary circulation (when hot, moist air flows upward from the storm's bottom, fueling greater intensity).

Doyle's team will use this year's data to create an advanced version of COAMPS-TC for the 2017 season -- and will further test this new version by simulating hurricanes that occurred worldwide from 2013-2016. The goal is to see how accurate previous predictions were and use the new information to improve future forecasting.

Bob Freeman | EurekAlert!
Further information:
http://www.onr.navy.mil/Media-Center/Press-Releases/2016/Hurricane-Intensity-Storm-Forecasting.aspx

Further reports about: Global Hawk cyclones hurricane tropical cyclones wind speed

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>