Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge waves measured for first time in Arctic Ocean

30.07.2014

As the climate warms and sea ice retreats, the North is changing.

An ice-covered expanse now has a season of increasingly open water that is predicted to extend across the whole Arctic Ocean before the middle of this century. Storms thus have the potential to create Arctic swell – huge waves that could add a new and unpredictable element to the region.


J. Thomson / UW

The sea ice in July 2014 as it begins to retreat from the Alaskan coast.


Google Maps

The 2012 measurement was made in deep water in the Beaufort Sea north of Alaska.

A University of Washington researcher made the first study of waves in the middle of the Arctic Ocean, and detected house-sized waves during a September 2012 storm. The results were recently published in Geophysical Research Letters.

... more about:
»Arctic »Laboratory »Naval »Ocean »energy »observations »waves

“As the Arctic is melting, it’s a pretty simple prediction that the additional open water should make waves,” said lead author Jim Thomson, an oceanographer with the UW Applied Physics Laboratory.

His data show that winds in mid-September 2012 created waves of 5 meters (16 feet) high during the peak of the storm. The research also traces the sources of those big waves: high winds, which have always howled through the Arctic, combined with the new reality of open water in summer. 

Arctic ice used to retreat less than 100 miles from the shore. In 2012, it retreated more than 1,000 miles. Wind blowing across an expanse of water for a long time creates whitecaps, then small waves, which then slowly consolidate into big swells that carry huge amounts of energy in a single punch.

The size of the waves increases with the fetch, or travel distance over open water. So more open water means bigger waves. As waves grow bigger they also catch more wind, driving them faster and with more energy.

Shipping and oil companies have been eyeing the opportunity of an ice-free season in the Arctic Ocean. The emergence of big waves in the Arctic could be bad news for operating in newly ice-free Northern waters.

“Almost all of the casualties and losses at sea are because of stormy conditions, and breaking waves are often the culprit,” Thomson said.

It also could be a new feedback loop leading to more open water as bigger waves break up the remaining summer ice floes.

“The melting has been going on for decades. What we’re talking about with the waves is potentially a new process, a mechanical process, in which the waves can push and pull and crash to break up the ice,” Thomson said.

Waves breaking on the shore could also affect the coastlines, where melting permafrost is already making shores more vulnerable to erosion.

The observations were made as part of a bigger project by a sensor anchored to the seafloor and sitting 50 meters (more than 150 feet) below the surface in the middle of the Beaufort Sea, about 350 miles off Alaska’s north slope and at the middle of the ice-free summer water. It measured wave height from mid-August until late October 2012.

Satellites can give a rough estimate of wave heights, but they don’t give precise numbers for storm events. They also don’t do well for the sloppy, partially ice-covered waters that are common in the Arctic in summer.

Warming temperatures and bigger waves could act together on summer ice floes, Thomson said: “At this point, we don’t really know relative importance of these processes in future scenarios.”

Establishing that relationship could help to predict what will happen to the sea ice in the future and help forecast how long the ice-free channel will remain open each year.

The recent paper recorded waves at just one place. This summer Thomson is part of an international group led by the UW that is putting dozens of sensors in the Arctic Ocean to better understand the physics of the sea-ice retreat.

“There are several competing theories for what happens when the waves approach and get in to the ice,” Thomson said. “A big part of what we’re doing with this program is evaluating those models.”

He will be out on Alaska’s northern coast from late July until mid-August deploying sensors to track waves. He hopes to learn how wave heights are affected by the weather, ice conditions and amount of open water.

“It’s going to be a quantum leap in terms of the number of observations, the level of detail and the level of precision” for measuring Arctic Ocean waves, Thomson said.

The other author is W. Erick Rogers at the Naval Research Laboratory. The research was funded by the U.S. Office of Naval Research.

###

For more information, contact Thomson at 206-616-0858 or jthomson@apl.washington.edu. He will be deploying sensors out of Prudhoe Bay from July 24 to Aug. 4 and have email access about once a day.

Hannah Hickey | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/07/29/huge-waves-measured-for-first-time-in-arctic-ocean/

Further reports about: Arctic Laboratory Naval Ocean energy observations waves

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>