Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge waves measured for first time in Arctic Ocean

30.07.2014

As the climate warms and sea ice retreats, the North is changing.

An ice-covered expanse now has a season of increasingly open water that is predicted to extend across the whole Arctic Ocean before the middle of this century. Storms thus have the potential to create Arctic swell – huge waves that could add a new and unpredictable element to the region.


J. Thomson / UW

The sea ice in July 2014 as it begins to retreat from the Alaskan coast.


Google Maps

The 2012 measurement was made in deep water in the Beaufort Sea north of Alaska.

A University of Washington researcher made the first study of waves in the middle of the Arctic Ocean, and detected house-sized waves during a September 2012 storm. The results were recently published in Geophysical Research Letters.

... more about:
»Arctic »Laboratory »Naval »Ocean »energy »observations »waves

“As the Arctic is melting, it’s a pretty simple prediction that the additional open water should make waves,” said lead author Jim Thomson, an oceanographer with the UW Applied Physics Laboratory.

His data show that winds in mid-September 2012 created waves of 5 meters (16 feet) high during the peak of the storm. The research also traces the sources of those big waves: high winds, which have always howled through the Arctic, combined with the new reality of open water in summer. 

Arctic ice used to retreat less than 100 miles from the shore. In 2012, it retreated more than 1,000 miles. Wind blowing across an expanse of water for a long time creates whitecaps, then small waves, which then slowly consolidate into big swells that carry huge amounts of energy in a single punch.

The size of the waves increases with the fetch, or travel distance over open water. So more open water means bigger waves. As waves grow bigger they also catch more wind, driving them faster and with more energy.

Shipping and oil companies have been eyeing the opportunity of an ice-free season in the Arctic Ocean. The emergence of big waves in the Arctic could be bad news for operating in newly ice-free Northern waters.

“Almost all of the casualties and losses at sea are because of stormy conditions, and breaking waves are often the culprit,” Thomson said.

It also could be a new feedback loop leading to more open water as bigger waves break up the remaining summer ice floes.

“The melting has been going on for decades. What we’re talking about with the waves is potentially a new process, a mechanical process, in which the waves can push and pull and crash to break up the ice,” Thomson said.

Waves breaking on the shore could also affect the coastlines, where melting permafrost is already making shores more vulnerable to erosion.

The observations were made as part of a bigger project by a sensor anchored to the seafloor and sitting 50 meters (more than 150 feet) below the surface in the middle of the Beaufort Sea, about 350 miles off Alaska’s north slope and at the middle of the ice-free summer water. It measured wave height from mid-August until late October 2012.

Satellites can give a rough estimate of wave heights, but they don’t give precise numbers for storm events. They also don’t do well for the sloppy, partially ice-covered waters that are common in the Arctic in summer.

Warming temperatures and bigger waves could act together on summer ice floes, Thomson said: “At this point, we don’t really know relative importance of these processes in future scenarios.”

Establishing that relationship could help to predict what will happen to the sea ice in the future and help forecast how long the ice-free channel will remain open each year.

The recent paper recorded waves at just one place. This summer Thomson is part of an international group led by the UW that is putting dozens of sensors in the Arctic Ocean to better understand the physics of the sea-ice retreat.

“There are several competing theories for what happens when the waves approach and get in to the ice,” Thomson said. “A big part of what we’re doing with this program is evaluating those models.”

He will be out on Alaska’s northern coast from late July until mid-August deploying sensors to track waves. He hopes to learn how wave heights are affected by the weather, ice conditions and amount of open water.

“It’s going to be a quantum leap in terms of the number of observations, the level of detail and the level of precision” for measuring Arctic Ocean waves, Thomson said.

The other author is W. Erick Rogers at the Naval Research Laboratory. The research was funded by the U.S. Office of Naval Research.

###

For more information, contact Thomson at 206-616-0858 or jthomson@apl.washington.edu. He will be deploying sensors out of Prudhoe Bay from July 24 to Aug. 4 and have email access about once a day.

Hannah Hickey | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/07/29/huge-waves-measured-for-first-time-in-arctic-ocean/

Further reports about: Arctic Laboratory Naval Ocean energy observations waves

More articles from Earth Sciences:

nachricht The most accurate optical single-ion clock worldwide
10.02.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Unusual cold spell in the stratosphere creates conditions for severe ozone depletion in the Arctic
10.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>