Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge iceberg breaks away from the Pine Island glacier in the Antarctic

10.07.2013
8 July 2013, a huge area of the ice shelf broke away from the Pine Island glacier, the longest and fastest flowing glacier in the Antarctic, and is now floating in the Amundsen Sea in the form of a very large iceberg.

Scientists of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have been following this natural spectacle via the earth observation satellites TerraSAR-X from the German Space Agency (DLR) and have documented it in many individual images. The data is intended to help solve the physical puzzle of this “calving“.


Pine Island Glacier Antarctica 8 July 2013
On the left handside the newly formed isberg with the a size of 720 square kilometres is visible. Photo: DLR

Scientists from the American space agency NASA discovered the first crack in the glacier tongue on 14 October 2011 when flying over the area. At that time it was some 24 kilometres long and 50 metres wide. ”As a result of these cracks, one giant iceberg broke away from the glacier tongue. It measures 720 square kilometres and is therefore almost as large as the city of Hamburg“, reports Prof. Angelika Humbert, ice researcher at the Alfred Wegener Institute.

The glaciologist and her team used the high resolution radar images of the DLR earth observation satellite TerraSAR-X to observe the progress of the two cracks and to better understand the physical processes behind the glacier movements. The researchers were thus able to measure the widths of the gaps and calculate the flow speed of the ice. ”Above the large crack, the glacier last flowed at a speed of twelve metres per day“, reports Humbert’s colleague Dr. Dana Floricioiu from DLR. And Nina Wilkens, PhD graduate in Prof. Humbert’s team, adds: “Using the images we have been able to follow how the larger crack on the Pine Island glacier extended initially to a length of 28 kilometres. Shortly before the “birth” of the iceberg, the gap then widened bit by bit so that it measured around 540 metres at its widest point.“

The scientists incorporate these and other TerraSAR-X satellite data in computer simulations using which they are able to model the break and flow mechanisms of the ice masses. “Glaciers are constantly in motion. They have their very own flow dynamics. Their ice is exposed to permanent tensions and the calving of icebergs is still largely unresearched “, explains ice modeller Angelika Humbert.

The scientist and her team then compare their simulation results with current satellite data such as from TerraSAR-X. If the model agrees with reality, the scientists can conclude, for example, the gliding property of the ground beneath the glacier ice and how the ice flow could behave in the event of further global warming.

Are ice breaks caused by climate change? Angelika Humbert does not so far see any direct connection: “The creation of cracks in the shelf ice and the development of new icebergs are natural processes“, says the glaciologist. However, the Pine Island glacier, which flows from the Hudson mountains to the Amundsen Sea, was the fastest flowing glacier in the Western Antarctic with a flow speed of around 4 kilometres per year. This speed is less caused by the rising air temperatures, however, and is more attributable to the fact that the wind directions in the Amundsen Sea have altered. ”The wind now brings warm sea water beneath the shelf ice. Over time, this process means that the shelf ice melts from below, primarily at the so-called grounding line, the critical transition to the land ice“, says the scientist.

For the Western Antarctic ice shelf, an even faster flow of the Pine Island glacier would presumably have serious consequences. “The Western Antarctic land ice is on land which is deeper than sea level. Its “bed” tends towards the land. The danger therefore exists that these large ice masses will become unstable and will start to slide“, says Angelika Humbert. If the entire West Antarctic ice shield were to flow into the Ocean, this would lead to a global rise in sea level of around 3.3 metres.

Info box: Shelf ice
The shelf ice, which is 200 to 1200 metres, thick is created by glaciers sliding into the sea. It is therefore an extension of the Antarctic land ice which thins at the edges and floats on the sea. The ice shelf itself rests on the Antarctic continent, reaching a thickness of up to four kilometres and is largely frozen to the rock bottom. A special feature of the Western Antarctic is that large areas of land are below sea level.
Notes for Editors:
Printable satellite images of the breaking away of the iceberg may be found in the online version of this press release at http://www.awi.de/en/news/press_releases/. Your contact partners in the Alfred Wegener Institute are Prof. Angelika Humbert (Tel: 0471- 48 31 – 18 34, e-mail: Angelika.Humbert(at)awi.de ) and Sina Löschke in the Press Office (Tel: 0471 – 48 31 – 20 08, e-mail: Sina.Loeschke(at)awi.de). Contact partner at the German Space Agency (DLR) is Dr. Dana Floricioiu (Tel: +49 8153 28-1763, e-mail: dana.floricioiu(at)dlr.de).

A NASA background report on the discovery of the first crack and impressive animation videos may be found at http://www.nasa.gov/mission_pages/icebridge/news/fall11/pig-break.html.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centers of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de/en

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>