Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge iceberg breaks away from the Pine Island glacier in the Antarctic

10.07.2013
8 July 2013, a huge area of the ice shelf broke away from the Pine Island glacier, the longest and fastest flowing glacier in the Antarctic, and is now floating in the Amundsen Sea in the form of a very large iceberg.

Scientists of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have been following this natural spectacle via the earth observation satellites TerraSAR-X from the German Space Agency (DLR) and have documented it in many individual images. The data is intended to help solve the physical puzzle of this “calving“.


Pine Island Glacier Antarctica 8 July 2013
On the left handside the newly formed isberg with the a size of 720 square kilometres is visible. Photo: DLR

Scientists from the American space agency NASA discovered the first crack in the glacier tongue on 14 October 2011 when flying over the area. At that time it was some 24 kilometres long and 50 metres wide. ”As a result of these cracks, one giant iceberg broke away from the glacier tongue. It measures 720 square kilometres and is therefore almost as large as the city of Hamburg“, reports Prof. Angelika Humbert, ice researcher at the Alfred Wegener Institute.

The glaciologist and her team used the high resolution radar images of the DLR earth observation satellite TerraSAR-X to observe the progress of the two cracks and to better understand the physical processes behind the glacier movements. The researchers were thus able to measure the widths of the gaps and calculate the flow speed of the ice. ”Above the large crack, the glacier last flowed at a speed of twelve metres per day“, reports Humbert’s colleague Dr. Dana Floricioiu from DLR. And Nina Wilkens, PhD graduate in Prof. Humbert’s team, adds: “Using the images we have been able to follow how the larger crack on the Pine Island glacier extended initially to a length of 28 kilometres. Shortly before the “birth” of the iceberg, the gap then widened bit by bit so that it measured around 540 metres at its widest point.“

The scientists incorporate these and other TerraSAR-X satellite data in computer simulations using which they are able to model the break and flow mechanisms of the ice masses. “Glaciers are constantly in motion. They have their very own flow dynamics. Their ice is exposed to permanent tensions and the calving of icebergs is still largely unresearched “, explains ice modeller Angelika Humbert.

The scientist and her team then compare their simulation results with current satellite data such as from TerraSAR-X. If the model agrees with reality, the scientists can conclude, for example, the gliding property of the ground beneath the glacier ice and how the ice flow could behave in the event of further global warming.

Are ice breaks caused by climate change? Angelika Humbert does not so far see any direct connection: “The creation of cracks in the shelf ice and the development of new icebergs are natural processes“, says the glaciologist. However, the Pine Island glacier, which flows from the Hudson mountains to the Amundsen Sea, was the fastest flowing glacier in the Western Antarctic with a flow speed of around 4 kilometres per year. This speed is less caused by the rising air temperatures, however, and is more attributable to the fact that the wind directions in the Amundsen Sea have altered. ”The wind now brings warm sea water beneath the shelf ice. Over time, this process means that the shelf ice melts from below, primarily at the so-called grounding line, the critical transition to the land ice“, says the scientist.

For the Western Antarctic ice shelf, an even faster flow of the Pine Island glacier would presumably have serious consequences. “The Western Antarctic land ice is on land which is deeper than sea level. Its “bed” tends towards the land. The danger therefore exists that these large ice masses will become unstable and will start to slide“, says Angelika Humbert. If the entire West Antarctic ice shield were to flow into the Ocean, this would lead to a global rise in sea level of around 3.3 metres.

Info box: Shelf ice
The shelf ice, which is 200 to 1200 metres, thick is created by glaciers sliding into the sea. It is therefore an extension of the Antarctic land ice which thins at the edges and floats on the sea. The ice shelf itself rests on the Antarctic continent, reaching a thickness of up to four kilometres and is largely frozen to the rock bottom. A special feature of the Western Antarctic is that large areas of land are below sea level.
Notes for Editors:
Printable satellite images of the breaking away of the iceberg may be found in the online version of this press release at http://www.awi.de/en/news/press_releases/. Your contact partners in the Alfred Wegener Institute are Prof. Angelika Humbert (Tel: 0471- 48 31 – 18 34, e-mail: Angelika.Humbert(at)awi.de ) and Sina Löschke in the Press Office (Tel: 0471 – 48 31 – 20 08, e-mail: Sina.Loeschke(at)awi.de). Contact partner at the German Space Agency (DLR) is Dr. Dana Floricioiu (Tel: +49 8153 28-1763, e-mail: dana.floricioiu(at)dlr.de).

A NASA background report on the discovery of the first crack and impressive animation videos may be found at http://www.nasa.gov/mission_pages/icebridge/news/fall11/pig-break.html.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centers of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de/en

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>