Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why Huge Bands of Iron Formed Billions of Years Ago on Earth’s Surface

No one knows why massive formations of banded iron — some ultimately hundreds of kilometers long, like a sleeping giant’s suspenders — mysteriously began precipitating on Earth’s surface about 3.5 billion years ago. Or why, almost 2 billion years later, the precipitation ceased.

Because these deposits carry information about early Earth’s surface conditions and climate changes, as well as provide much of modern industry’s iron resources, interested researchers have cast a wide net in trying to explain why and how these bands formed. But attempts to explain their existence based on seasonal variations, surface temperature changes and episodic seawater mixing all have foundered on assumptions requiring the unexplained oscillations of external forces.

None of these theories could satisfactorily explain all the observations made by geologists, particularly the existence of alternating structural bands of silica-rich layers with iron-rich layers in these deposits.

A new approach proposed in an October issue of Nature Geoscience by Sandia National Laboratories principal investigator Yifeng Wang and colleagues elsewhere may have the answer.

A key component of the process, the researchers found in computer simulations, may have been the absence of aluminum in early oceanic rocks. That absence chemically favored the formation of banded iron formations. The continual enrichment of oceanic crust by aluminum as Earth evolved ultimately ended the era of iron band formation.

A complete thermodynamic explanation by the research team suggests that iron- and silicon-rich fluids were generated by hydrothermal action on the seafloor. The team’s calculations show that the formation of bands was generated by internal interactions of the chemical system, rather than from external forcing by unexplained changes such as ocean surface temperature variations.

“This concept of the self-organizational origin of banded iron formations is very important,” said Wang. “It allows us to explain a lot of things about them, like their occurrence and band thickness.”

Wang’s Ph.D. advisor, Enrique Merino at Indiana University, may have been the first to consider banded iron formations as formed through self-organization, Wang said: “We started to work on the issue about 15 years ago.” But difficulties in pinning down an actual mechanism persisted.

“Last year, Huifang Xu [at the University of Wisconsin at Madison] and I happened to talk about his work on astrobiology and then we talked about banded iron formations,” said Yifeng. “After that, I got interested again in the topic. Luckily, I came across a very recent publication on silicic acid interactions with metals. With these new data, I did thermodynamic calculations. I looked at the results and talked to both Huifang and Enrique. The whole banded-iron-formation puzzle started to fit together nicely.”

Merino and Xu coauthored the paper with Wang, along with Hironomi Konishi, also at the University of Wisconsin at Madison.

“Our work has two interesting implications,” said Wang. “The Earth’s surface can be divided into four interrelated parts: atmosphere, hydrosphere, biosphere and lithosphere. Our work shows that the lithosphere, that is, the solid rock part, plays a very important role in regulating the surface evolution of the Earth. This may have an implication on the studies of other planets such as Mars. Our work also shows that to understand such evolution requires a careful consideration of nonlinear interactions among different components in the system. Such consideration is important for prediction of modern climatic cycles.”

“After all,” he said, “Earth’s system is inherently complex and the involved processes couple with each other in nonlinear fashion.”

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, an autonomous Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>