Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubert's remnants still raining on southern Madagascar

12.03.2010
Hubert may not be a tropical storm now that it has made landfall in southeastern Madagascar, but it's still a formidable and large storm system. NASA's Aqua satellite revealed that there are still some very high, strong thunderstorms in Hubert's remnants as it continues to bring rains and gusty winds to southeast and south-central Madagascar.

NASA's Aqua infrared satellite imagery from the Atmospheric Infrared Sounder (AIRS) instrument confirmed that some deep convection (rapidly rising air that creates the thunderstorms that power tropical cyclones) is still occurring in the storm, even though the center is over land.

The infrared image of Hubert captured on March 11 at 1053 UTC (5:53 a.m. ET) and showed some high, cold thunderstorms around the center of the storm, and that the eastern edge of Hubert was still over the Southern Indian Ocean. Hubert is expected to continue moving inland and grow weaker.

At 1 p.m. ET, March 11, heavier rains stretched from the city of Vavtenina southward through the cities of Mahanoro, Nosy Varika, Mananjary and Fianarantsoa. Most of the heaviest rains remained to the east and south of the capital city of Antananarivo.

Residents in southern and central Madagascar can continue to expect some moderate to heavy rainfall from this system over the next couple of days.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>